http://acm.hdu.edu.cn/showproblem.php?pid=6623

题意,给50000个1e18级别的数N,求它质因数分解里面的最小的指数(不算0)

比赛的时候给划了一个1e6以内的暴力判断,判断失效之后开平方根看看是不是质数平方,是则2不是则1。这个是题解的最后一步。

可惜没办法沿着这个思路走,就开始自闭了。

其实先暴力判断掉N的1/5次方内的质因数的指数,假如是1则直接退出了,否则要么不出现要么出现至少是2,记录剩余的数字为M。显然M是与N同级别的。

由于暴力掉了N的1/5次方内的质因数,M不可能会再有超过5的幂。接下来有好多种情况。

M是受它的最小的质数的幂限制的,那么会不会有可能是若干个p的4次方的积呢?有可能,这个时候就开四次方然后看看是不是整数。为什么不会出现p的4次方*p的5次方这种情况呢?因为M不可能会再有超过5的幂。所以假如瓶颈是4那么就全部都是4。同时因为前面筛掉了小的质因数,剩下的质因数从4000开始,不能凑够7次方。

否则瓶颈不是4,那是不是3呢?是若干个p的3次方的乘积?是的话就是3?为什么不会有p的3次方*p的4次方的情况呢?因为前面筛掉了小的质因数,剩下的质因数从4000开始,不能凑够7次方。

否则瓶颈也不是3,是不是2呢?若干个p的2次方的乘积?不会有p的2次方*p的3次方出现吗?也是一样的,因为前面筛掉了小的质因数,剩下的质因数从4000开始,不能凑够5次方。

那么还不行那就是若干个1的乘积了。

2019 Multi-University Training Contest 4 - 1010 - Minimal Power of Prime的更多相关文章

  1. 2019 Multi-University Training Contest 2: 1010 Just Skip The Problem 自闭记

    2019 Multi-University Training Contest 2: 1010 Just Skip The Problem 自闭记 题意 多测.每次给你一个数\(n\),你可以同时问无数 ...

  2. 2019杭电多校第四场hdu6623 Minimal Power of Prime

    Minimal Power of Prime 题目传送门 解题思路 先打\(N^\frac{1}{5}\)内的素数表,对于每一个n,先分解\(N^\frac{1}{5}\)范围内的素数,分解完后n变为 ...

  3. hdu 6406 Taotao Picks Apples (2018 Multi-University Training Contest 8 1010)(二分,前缀和)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=6406 思路: 暴力,预处理三个前缀和:[1,n]桃子会被摘掉,1到当前点的最大值,1到当前点被摘掉的桃子的 ...

  4. HDU 6318.Swaps and Inversions-求逆序对-线段树 or 归并排序 or 离散化+树状数组 (2018 Multi-University Training Contest 2 1010)

    6318.Swaps and Inversions 这个题就是找逆序对,然后逆序对数*min(x,y)就可以了. 官方题解:注意到逆序对=交换相邻需要交换的次数,那么输出 逆序对个数 即可. 求逆序对 ...

  5. HDU 5336 XYZ and Drops 2015 Multi-University Training Contest 4 1010

    这题的题意是给你一幅图,图里面有水滴.每一个水滴都有质量,然后再给你一个起点,他会在一開始的时候向四周发射4个小水滴,假设小水滴撞上水滴,那么他们会融合,假设质量大于4了,那么就会爆炸,向四周射出质量 ...

  6. 2019 Nowcoder Multi-University Training Contest 4 E Explorer

    线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...

  7. 2019 Nowcoder Multi-University Training Contest 1 H-XOR

    由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...

  8. 2017 Multi-University Training Contest - Team 1 Balala Power!

    Talented Mr.Tang has n strings consisting of only lower case characters. He wants to charge them wit ...

  9. [2019杭电多校第四场][hdu6623]Minimal Power of Prime

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6623 题目大意为求一个数的唯一分解的最小幂次.即120=23*31*51则答案为1. 因为数字太大不能 ...

随机推荐

  1. 微信小程序 背景音频播放遇到的深坑

    1.微信前台(聊天页)暂停后回到小程序,再点击播放,播放信息消失,无法续播 ios可以监听到 (onStop已经停止)事件, 安卓无法监听到,只能监听到普通的暂停事件. 2.

  2. 049:ORM常用Field详解(1)

    常用字段: 在 Django 中,定义了一些 Field 来与数据库表中的字段类型来进行映射.以下将介绍那些常用的字段类型. AutoField: 映射到数据库中是 int 类型,可以有自动增长的特性 ...

  3. setData 机制

    解释:setData 函数,用于将数据,从逻辑层发送到视图层,当开发者调用 setData 后,数据的变化,会引起视图层的更新.参数说明 属性 类型 是否必填 描述 data Object 是 这次要 ...

  4. asp.net上传超大文件

    HTML部分 <%@PageLanguage="C#"AutoEventWireup="true"CodeBehind="index.aspx. ...

  5. BZOJ 2097: [Usaco2010 Dec]Exercise 奶牛健美操 二分 + 贪心 + 树上问题

    Code: #include<bits/stdc++.h> using namespace std; #define setIO(s) freopen(s".in",& ...

  6. c++复习——类(1)

    1.  拷贝构造函数 //并没有搞懂 先存着吧  遇到实际情况再回来看看 拷贝构造函数在以下三种情况被调用: (1)当用一个已经初始化过的对象去初始化同类另一个对象时, 拷贝构造函数被调用. Samp ...

  7. GPSMap程序源代码

    1. 界面 第一次打开时选择工程文件 MainActivity.java Tools.OpenDialog(new ICallback(){ public void OnClick(String pa ...

  8. 动态淀粉质(划掉)题单&简要题解

    简介 动态点分治的思想:还不太清楚诶怎么办. 大概是通过降低树高来降低每次修改和询问的复杂度吧,还可以把树上一个连通块的信息统计到一个点(重心)上.具体实现方式和普通的静态点分治没有太大的区别,只是把 ...

  9. [CSP-S模拟测试]:小P的单调数列(树状数组+DP)

    题目描述 小$P$最近喜欢上了单调数列,他觉得单调的数列具有非常多优美的性质.经过小$P$复杂的数学推导,他计算出了一个单调增数列的艺术价值等于该数列中所有书的总和.并且以这个为基础,小$P$还可以求 ...

  10. uniapp开发

    问题1:去掉导航条 给一个单独的页面隐藏顶部的 导航栏 可以在pages.json里 单独的路由style下面配置  "app-plus": {"titleNView&q ...