bzoj2961&&bzoj4140 共点圆
题目描述
在平面直角坐标系中,Wayne需要你完成n次操作,操作只有两种:
1.0 x y。表示在坐标系中加入一个以(x, y)为圆心且过原点的圆。
2.1 x y。表示询问点(x, y)是否在所有已加入的圆的内部(含圆周),且至少在一个圆内部(含圆周)。
为了减少你的工作量,题目保证圆心严格在x轴上方(纵坐标为正),且横坐标非零。
输入格式
第1行一个整数n。
接下来n行,每行第一个数是0或1,分别表示两种操作。
接着有两个实数x和y,具体意义见题面。
输出格式
对于每个询问操作,如果点在所有已加入的圆内(或圆周上),则输出“Yes”(不含引号);否则输出“No”(不含引号)。
数据范围
对于100%的数据,n≤500000,所有坐标绝对值不超过10000。
题解
- 在一个圆内$(x-a)^2 + (y-b)^2 <= x^2 + y^2$,化简得$ax + by >= \frac{a^2 + b^2}{2}$,
- 右边是定值,求出$ax+by$的最小值即可判断,做法类似bzoj3533
- 如果对时间分治,每次对区间左边求凸包,$n \ logn$可以实现;
- bzoj4140要求强制在线,可以采用二进制分组
- 由于只会从后面查询,类似树状数组,每次重构末尾的$lowbit$位的凸包,查询不断-=lowbit(i)三分;
- 注意复杂度的理解:
- 考虑$n$位二进制数$N$,$lowbit$为第$i$位的有,$2^{n-i}$个,
- $\sum_{i=0}^{n-1} 2^i \ * \ 2^{n-i} = N \ log_{2} \ N$
#include<bits/stdc++.h>
#define ld double
#define il inline
using namespace std;
const int N=;
const ld eps=1e-;
int n,m,st1[N],ed1[N],st2[N],ed2[N],top,cnt;
ld mn;
il int dcmp(ld x){return fabs(x)<eps?:x<?-:;}
struct P{
ld x,y;
P(ld X=,ld Y=):x(X),y(Y){};
bool operator <(const P&a)const{return fabs(x-a.x)<eps?y<a.y:x<a.x;}
P operator -(const P&a)const{return P(x-a.x,y-a.y);}
}q[N],p[N],t[N],Q;
ld crs(const P&a,const P&b){return a.x*b.y-a.y*b.x;}
ld dot(const P&a,const P&b){return a.x*b.x+a.y*b.y;}
void ask(int l,int r){
while(r-l>=){
int mid=(r-l)/,mid1=l+mid,mid2=r-mid;
if(dot(q[mid1],Q)>dot(q[mid2],Q))l=mid1;
else r=mid2;
}
for(int i=l;i<=r;++i)mn=min(mn,dot(q[i],Q));
}
int main(){
#ifndef ONLINE_JUDGE
freopen("bzoj2961.in","r",stdin);
freopen("bzoj2961.out","w",stdout);
#endif
scanf("%d",&n);
for(int i=,op;i<=n;++i){
scanf("%d",&op);
if(op==){
m++;scanf("%lf%lf",&p[m].x,&p[m].y);
p[m].x+=cnt,p[m].y+=cnt;
int l=m-(m&-m)+,r=m;
st1[m]=top=l;
for(int j=l;j<=r;++j)t[j]=p[j];
sort(t+l,t+r+);
q[top]=t[l];
for(int j=l+;j<=r;++j){
while(top>l&&dcmp(crs(q[top]-q[top-],t[j]-q[top]))<=)top--;
q[++top]=t[j];
}
int now=ed1[m]=st2[m]=top;
for(int j=r-;j>=l;--j){
while(top>now&&dcmp(crs(q[top]-q[top-],t[j]-q[top]))<=)top--;
if(j>l)q[++top]=t[j];
}
ed2[m]=top;
}else{
scanf("%lf%lf",&Q.x,&Q.y);
Q.x+=cnt,Q.y+=cnt;
if(!m){puts("No");continue;}
mn = 1e18;
for(int j=m;j;j-=j&-j){
if(Q.y>)ask(st1[j],ed1[j]);
else ask(st2[j],ed2[j]),mn=min(mn,dot(Q,q[st1[j]]));
}
if(dcmp(mn*-Q.x*Q.x-Q.y*Q.y)>=)puts("Yes"),cnt++;
else puts("No");
}
}
}
bzoj2961&&4140
bzoj2961&&bzoj4140 共点圆的更多相关文章
- 【BZOJ2961】共点圆(CDQ分治)
[BZOJ2961]共点圆(CDQ分治) 题面 BZOJ 题解 设询问点\((x,y)\),圆心是\((X,Y)\) 那么如果点在园内的话就需要满足 \((X-x)^2+(Y-y)^2\le X^2+ ...
- 【bzoj2961】 共点圆
http://www.lydsy.com/JudgeOnline/problem.php?id=2961 (题目链接) 题意 按照一定的顺序给出一些圆和一些点,对于每一个点问是否在所有圆内. Solu ...
- BZOJ4140 : 共点圆加强版
假设当前询问点为$(A,B)$,那么它在一个以$(x,y)$为圆心的圆里需要满足: $(x-A)^2+(y-B)^2\leq x^2+y^2$ $2Ax+2By\geq A^2+B^2$ 等价于询问所 ...
- 【bzoj2961】共点圆 k-d树
更新:此题我的代码设置eps=1e-8会WA,现在改为1e-9貌似T了 此题网上的大部分做法是cdq分治+凸包,然而我觉得太烦了,于是自己口胡了一个k-d树做法: 加入一个圆$(x,y)$,直接在k- ...
- 【BZOJ4140】共点圆加强版(二进制分组)
[BZOJ4140]共点圆加强版(二进制分组) 题面 BZOJ 题解 我卡精度卡了一天.... 之前不强制在线的做法是\(CDQ\)分治,维护一个凸壳就好了. 现在改成二进制分组,每次重建凸壳就好了. ...
- BZOJ2961: 共点圆
好久没发了 CDQ分治,具体做法见XHR的论文… /************************************************************** Problem: 29 ...
- BZOJ2961 共点圆[CDQ分治]
题面 bzoj 其实就是推一下圆的式子 长成这个样子 假设要查询的点是(x, y) 某个圆心是(p, q) \((x - p)^2 + (y - q)^2 \leq p^2 + q^2\) 变成 \( ...
- bzoj2961 共点圆 bzoj 4140
题解: 比较水的一道题 首先我们化简一下式子发现是维护xxo+yyo的最值 显然是用凸包来做 我们可以直接用支持插入删除的凸包 也是nlogn的 因为没有强制在线,我们也可以cdq,考虑前面一半对答案 ...
- bzoj2961 共点圆 (CDQ分治, 凸包)
/* 可以发现可行的圆心相对于我们要查询的点是在一个半平面上, 然后我们要做的就是动态维护凸壳然后用这个半平面去切它 看看是否是在合法的那一面 然后cdq分治就可以了 代码基本是抄的, */ #inc ...
随机推荐
- 06-matplotlib-饼状图
import numpy as np import matplotlib.pyplot as plt ''' 饼状图显示一个数据系列中各项总和的比例: 饼状图中的数据点显示为整个饼状图的百分比: 如: ...
- AI入门课程资源
企业 kaggle https://www.kaggle.com/learn/overview Google 介绍 https://developers.google.cn/machine-lea ...
- AJAX请求中出现OPTIONS请求
背景 有一个前后端分离的VUE项目来发送ajax请求, 查看Nginx日志或使用Chrome Dev Tools查看请求发送情况时, 会看到每次调后台API的请求之前, 都会发送一个OPTIONS请求 ...
- Kubernetes探索学习005--Kubernetes的Controller模型和ReplicaSet伸缩
1.Kubernetes的controller pattern 需要认识到Kubernetes操作Pod的逻辑,都是由控制器来完成的. 查看之前写过的nginx-deployment的YAML文件 [ ...
- [shell] 一次性赋值多个变量
管道符是fork子进程,子进程的变量无法传回父进程 [root@XM-v106 ~]# echo "1 2 3" | read a b c;echo $a [root@XM-v10 ...
- Servet3.0于Servlet2.5比较
Servet3.0于Servlet2.5比较恢复 首先是利用注解代替配置文件 Servlet2.5利用配置文件对Servlet进行配置 例如这样 <servlet> <servlet ...
- ns3 回调机制
(1)目的:为了实现两个模块之间的通信(这两个模块没有任何依赖关系) (2) C语言中的函数指针 int (*a)(int q) = 0; //声明一个函数指针a,初始值设为0 //. //. //. ...
- NBA篮球足球在线直播插件下载
PPlive:点此下载PPLive播放器 Sopcast:点此下载Sopcast播放器 UUSee:点此下载UUSee播放器 CCTVReg:点此下载CCTV插件 PPStream:点此下载PPstr ...
- python下的Box2d物理引擎的配置
/******************************* I come back! 由于已经大四了,正在找工作 导致了至今以来第二长的时间内没有更新博客.向大家表示道歉 *********** ...
- 《构建之法》第8,9,10章读后感&sprint1个人总结
第8章 这一章主要介绍需求分析.具体说明了软件需求的类型.利益相关者,获取用户需求分析的常用方法与步骤.竞争性需求分析的框架NABCD,四象限方法以及项目计划和估计的技术.需求分析是决定一个软件的使用 ...