题目链接

很容易写出\(O(n^2k)\)的DP方程。然后显然决策点是单调的,于是维护决策点就可以了。。

这个过程看代码或者别的博客吧我不写了。。(其实是忘了)

这样复杂度\(O(nk\log n)\)。但是在BZOJ T了=-=。

\(k\)可以带权二分优化到\(O(n\log k\log n)\)就能过了吧。

不想改了。

我特么学的是假的单调。。

又是zz错误浪费半下午(╯‵□′)╯︵┴─┴

辣鸡题还卡时间

不过就不过吧mmp

Upd: Codeforces 321E.Ciel and Gondolas上过了。1028ms 130224KB。。

//130968kb	3000ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 5000000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=4003; int n,K,A[N][N],sum[N][N],f[2][N],Now;
char IN[MAXIN],*SS=IN,*TT=IN;
struct Node{
int l,r,pos;//pos是区间[l,r]的最优转移点
}q[N]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline int Cost(int i,int p){//在i之前,分割p,p+1处
return f[Now][p]+sum[p+1][i];
}
inline int Find(Node t,int x)
{
int l=t.l, r=t.r, mid;
while(l<=r)//l==r时应再Check一次?
if(mid=l+r>>1, Cost(mid,x)<Cost(mid,t.pos)) r=mid-1;//!
else l=mid+1;
return l;
} int main()
{
n=read(),K=read();
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j) A[i][j]=A[i][j-1]+read();
for(int i=1; i<=n; ++i)
for(int j=i+1; j<=n; ++j)
sum[i][j]=sum[i][j-1]+A[j][j]-A[j][i-1];
for(int i=1; i<=n; ++i) f[1][i]=sum[1][i];
Now=1;
for(int j=1; j<K; ++j, Now^=1)
{
int h=1,t=1; q[1]=(Node){1,n,1};
for(int i=2; i<=n; ++i)
{
if(i>q[h].r) ++h;
f[Now^1][i]=Cost(i,q[h].pos);
if(Cost(n,i)<Cost(n,q[t].pos))//为什么要拿n比?不太明白。
{
while(h<=t && Cost(q[t].l,i)<Cost(q[t].l,q[t].pos)) --t;//队尾区间的l用i都比pos更优了,而决策点是单调的,所以[l,r]肯定都要不选pos而选i了
if(h>t) q[++t]=(Node){i,n,i};
else
{
int Pos=Find(q[t],i);
q[t].r=Pos-1, q[++t]=(Node){Pos,n,i};
}
}
}
}
printf("%d",f[Now][n]); return 0;
}

BZOJ.5311.贞鱼(DP 决策单调)的更多相关文章

  1. CF321E Ciel and Gondolas & BZOJ 5311 贞鱼

    一眼可以看出$O(kn^{2})$的$dp$方程,然后就不会了呜呜呜. 设$f_{i, j}$表示已经选到了第$i + 1$个数并且选了$j$段的最小代价,那么 $f_{i, j} = f_{p, j ...

  2. BZOJ_5311_贞鱼_决策单调性+带权二分

    BZOJ_5311_贞鱼_决策单调性+带权二分 Description 众所周知,贞鱼是一种高智商水生动物.不过他们到了陆地上智商会减半. 这不?他们遇到了大麻烦! n只贞鱼到陆地上乘车,现在有k辆汽 ...

  3. 【Codeforces 321E / BZOJ 5311】【DP凸优化】【单调队列】贞鱼

    目录 题意: 输入格式 输出格式 思路: DP凸优化的部分 单调队列转移的部分 坑点 代码 题意: 有n条超级大佬贞鱼站成一行,现在你需要使用恰好k辆车把它们全都运走.要求每辆车上的贞鱼在序列中都是连 ...

  4. Newnode's NOI(P?)模拟赛 第二题 dp决策单调优化

    其实直接暴力O(n3)DP+O2O(n^3)DP+O_2O(n3)DP+O2​优化能过- CODE O(n3)O(n^3)O(n3) 先来个O(n3)O(n^3)O(n3)暴力DP(开了O2O_2O2 ...

  5. 【BZOJ5311/CF321E】贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性)

    [BZOJ5311/CF321E]贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性) 题面 BZOJ CF 洛谷 辣鸡BZOJ卡常数!!!!!! 辣鸡BZOJ卡常数!!!!!! ...

  6. bzoj 4769: 超级贞鱼 -- 归并排序

    4769: 超级贞鱼 Time Limit: 1 Sec  Memory Limit: 128 MB Description 马达加斯加贞鱼是一种神奇的双脚贞鱼,它们把自己的智慧写在脚上——每只贞鱼的 ...

  7. BZOJ5311,CF321E 贞鱼

    题意 Problem 5311. -- 贞鱼 5311: 贞鱼 Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 677  Solved: 150[Subm ...

  8. 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)

    洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...

  9. CF868 F. Yet Another Minimization Problem 决策单调优化 分治

    目录 题目链接 题解 代码 题目链接 CF868F. Yet Another Minimization Problem 题解 \(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k ...

随机推荐

  1. 怎么样通过编写Python小程序来统计测试脚本的关键字

    怎么样通过编写Python小程序来统计测试脚本的关键字 通常自动化测试项目到了一定的程序,编写的测试代码自然就会很多,如果很早已经编写的测试脚本现在某些基础函数.业务函数需要修改,那么势必要找出那些引 ...

  2. SVC 工作过程中出现的错误记录(SEO项目)

    1.同一のキーを含む項目が既に追加されています.追加的项目中含有重复主键) /seo' アプリケーションでサーバー エラーが発生しました. 同一のキーを含む項目が既に追加されています. 説明: 現在の ...

  3. STM32 IAP升级

    STM32 IAP在线升级,用Jlink设置读保护后前5K字节是默认加了写保护的,导致IAP升级时擦除和写入FLASH不成功,可以做两个boot,前5k为第一个boot程序,上电时负责跳转到APP还是 ...

  4. Linux下配置镜像源

    清华大学地址: https://mirrors.tuna.tsinghua.edu.cn 选择对应ubuntu的版本 在linux下用终端敲 cd /etc/apt/source.list 把里面的内 ...

  5. 17 Go Slices: usage and internals GO语言切片: 使用和内部

    Go Slices: usage and internals  GO语言切片: 使用和内部 5 January 2011 Introduction Go's slice type provides a ...

  6. js点击页面其他地方如何隐藏div元素菜单

    web页面常用的一个需求,写下拉菜单是我们往往不是用select_option,而是自定义一个元素列出选项来满足需求,当我们点击按钮出现菜单, 点击按钮或菜单以外页面空白地方隐藏该菜单,这里提供一种简 ...

  7. python网络编程-paramiko

    python基础学习日志day8-paramiko 一:简介 Python的paramiko模块,该模块机遇SSH用于连接远程服务器并执行相关操作 现有这样的需求:需要使用windows客户端,远程连 ...

  8. python_selenium自动化测试框架

    设计思路 本文整理归纳以往的工作中用到的东西,现汇总成基础测试框架提供分享. 框架采用python3 + selenium3 + PO + yaml + ddt + unittest等技术编写成基础测 ...

  9. redis主从,哨兵(windows版)

    一.下载 由于redis官方并不支持windows操作系统,所以官网上是下不到的,需要到gitlab上下载,下载地址如下: https://github.com/MicrosoftArchive/re ...

  10. Effective STL 笔记 -- Item 6 ~ 7: Container and Object Pointer

    Effective STL 笔记 – Item 6 ~ 7: Container and Object Pointer 中间两次笔记被删掉了,简单补一下: Item 3 中提到如果将对象直接放入容器中 ...