UVA - 11134

We would like to place n rooks, 1 ≤ n ≤ 5000, on a n × n board subject to the following restrictions

  • The i-th rook can only be placed within the rectan- gle given by its left-upper corner (xli,yli) and its right- lower corner (xri,yri), where 1 ≤ i ≤ n, 1 ≤ xli ≤ xri ≤n,1≤yli ≤yri ≤n.

  • No two rooks can attack each other, that is no two rooks can occupy the same column or the same row.

    Input

    The input consists of several test cases. The first line of each
    of them contains one integer number, n, the side of the board. n lines follow giving the rectangles
    where the rooks can be placed as described above. The i-th line among them gives xli, yli, xri, and
    yri. The input file is terminated with the integer ‘0’ on a line by itself.

    Output

    Your task is to find such a placing of rooks that the above conditions are satisfied and then output n
    lines each giving the position of a rook in order in which their rectangles appeared in the input. If there
    are multiple solutions, any one will do. Output ‘IMPOSSIBLE’ if there is no such placing of the rooks.

    Sample Input

    8
    1122
    5788
    2255
    2255
    6386
    6385
    6388
    3678
    8
    1122
    5788
    2255
    2255
    6386
    6385
    6388
    3678
    0

    Sample Output

    11
    58
    24
    42
    73
    85
    66
    37
    11
    58
    24
    42
    73
    85
    66
    37


白书
在n*n的棋盘上面放n个车,能否使他们互相不攻击(即不能在同一行一列),并且第i个车必须落在第i的矩形范围(xl,yl, xr,yr)之内
行列可以分开求解,变成了区间问题
一开始想按r小大排序,r相同按l排序,然后依次选择行了
然而,应该是“对于每个位置,选择合法且r最小的”,这样排序并不能保证
只好n^2暴力找了
 
//
// main.cpp
// uva11134
//
// Created by Candy on 10/17/16.
// Copyright © 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=5e3+,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n;
int x[N],y[N];
struct data{
int id;
int l1,r1,l2,r2;
}a[N];
//bool cmp1(data &x,data &y){
// if(x.l1==y.l1) return x.r1<y.r1;
// else return x.l1<y.l1;
//}
//bool cmp2(data &x,data &y){
// if(x.l2==y.l2) return x.r2<y.r2;
// return x.l2<y.l2;
//}
//bool solve(){
// sort(a+1,a+1+n,cmp1);
// int p=1;
// for(int i=1;i<=n;i++){
// //printf("hi%d %d %d %d\n",i,a[i].l1,a[i].r1,a[i].id);
// if(a[p].l1<=i&&i<=a[p].r1) x[a[p++].id]=i;
// else if(a[p].r1<i||a[p].l1>i) return 0;
// }
//
// sort(a+1,a+1+n,cmp2);
// p=1;
// for(int i=1;i<=n;i++){
// //printf("ih%d %d %d %d\n",i,a[i].l2,a[i].r2,a[i].id);
// if(a[p].l2<=i&&i<=a[p].r2) y[a[p++].id]=i;
// else if(a[p].r2<i||a[p].l2>i) return 0;
// }
// return 1;
//}
bool sol(){
memset(x,,sizeof(x));
memset(y,,sizeof(y));
for(int i=;i<=n;i++){
int rook=,mnr=INF;
for(int j=;j<=n;j++)
if(!x[j]&&a[j].l1<=i&&a[j].r1<mnr) rook=j,mnr=a[j].r1;
//printf("rook1 %d\n",rook);
if(rook==||a[rook].r1<i) return false;
x[rook]=i;
}
for(int i=;i<=n;i++){
int rook=,mnr=INF;
for(int j=;j<=n;j++)
if(!y[j]&&a[j].l2<=i&&a[j].r2<mnr) rook=j,mnr=a[j].r2;
//printf("rook2 %d\n",rook);
if(rook==||a[rook].r2<i) return false;
y[rook]=i;
}
return ;
}
int main(int argc, const char * argv[]) {
while((n=read())){
for(int i=;i<=n;i++){
a[i].id=i;
a[i].l1=read();a[i].l2=read();a[i].r1=read();a[i].r2=read();
}
if(sol()){
for(int i=;i<=n;i++) printf("%d %d\n",x[i],y[i]);
}else printf("IMPOSSIBLE\n");
} return ;
}

UVA - 11134 Fabled Rooks[贪心 问题分解]的更多相关文章

  1. UVA 11134 Fabled Rooks 贪心

    题目链接:UVA - 11134 题意描述:在一个n*n(1<=n<=5000)的棋盘上放置n个车,每个车都只能在给定的一个矩形里放置,使其n个车两两不在同一行和同一列,判断并给出解决方案 ...

  2. UVA 11134 - Fabled Rooks(贪心+优先队列)

    We would like to place  n  rooks, 1 ≤  n  ≤ 5000, on a  n×n  board subject to the following restrict ...

  3. UVa 11134 - Fabled Rooks——[问题分解、贪心法]

    We would like to place n rooks, ≤ n ≤ , on a n × n board subject to the following restrictions • The ...

  4. uva 11134 - Fabled Rooks(问题转换+优先队列)

    题目链接:uva 11134 - Fabled Rooks 题目大意:给出n,表示要在n*n的矩阵上放置n个车,并且保证第i辆车在第i个区间上,每个区间给出左上角和右小角的坐标.另要求任意两个车之间不 ...

  5. UVa 11134 Fabled Rooks (贪心+问题分解)

    题意:在一个n*n的棋盘上放n个车,让它们不互相攻击,并且第i辆车在给定的小矩形内. 析:说实话,一看这个题真是没思路,后来看了分析,原来这个列和行是没有任何关系的,我们可以分开看, 把它变成两个一维 ...

  6. UVA - 11134 Fabled Rooks问题分解,贪心

    题目:点击打开题目链接 思路:为了满足所有的车不能相互攻击,就要保证所有的车不同行不同列,于是可以发现,行与列是无关的,因此题目可以拆解为两个一维问题,即在区间[1-n]之间选择n个不同的整数,使得第 ...

  7. uva 11134 fabled rooks (贪心)——yhx

    We would like to place n rooks, 1 n 5000, on a n nboard subject to the following restrictions• The i ...

  8. UVa 11134 - Fabled Rooks 优先队列,贪心 难度: 0

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  9. UVA 11134 Fabled Rooks(贪心的妙用+memset误用警示)

    题目链接: https://cn.vjudge.net/problem/UVA-11134 /* 问题 输入棋盘的规模和车的数量n(1=<n<=5000),接着输入n辆车的所能在的矩阵的范 ...

随机推荐

  1. .NET中DateTime.Now.ToString的格式化字符串

    .NET中DateTime.Now.ToString显示毫秒:DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss.fff") DateTime.N ...

  2. 从零开始学Python07作业思路:模拟人生小游戏

    标签(空格分隔): 从零开始学Python 一,作业说明 模拟人生: 1 定义三个人物,屌丝John,美女Liz,高富帅Peter. John和Liz大学时是恋人,毕业工作后,Liz傍上了Peter, ...

  3. Java中从键盘中任意输入字符串,将其转换成数字后,并求和

  4. 【http抓包】记录一次抓手机app的接口

    抓手机的接口地址,好用的工具很多,想 windows下的 Fiddler 和mac下的Charles 1. fiddler的设置教程是 http://jingyan.baidu.com/article ...

  5. Asp.net mvc自定义Filter简单使用

    自定义Filter的基本思路是继承基类ActionFilterAttribute,并根据实际需要重写OnActionExecuting,OnActionExecuted,OnResultExecuti ...

  6. GJM :SqlServer语言学习笔记

    ----------------------------SqlServer RDBMS 关系型数据库管理系统 Row/Record 行 Colimn/Attribute 列 Field/Cell 字段 ...

  7. Sqlserver 中系统表sysobjects、syscolumns以及函数object_id

    1.sysobjects 系统对象表. 保存当前数据库的对象,如约束.默认值.日志.规则.存储过程等 sysobjects 重要字段解释: sysObjects ( Name sysname, --o ...

  8. [C/C++] DebugBreak

    在代码中直接调用DebugBreak()函数,可以使程序中断运行,和在IDE中设置断点中断运行的道理是一样的. 用这种方式,一些情况下比打断点更方便调试,如下,在test()函数返回0时激活断点 #i ...

  9. Android Touch事件传递机制 一: OnTouch,OnItemClick(监听器),dispatchTouchEvent(伪生命周期)

      ViewGroup View  Activity dispatchTouchEvent 有 有 有 onInterceptTouchEvent 有 无 无 onTouchEvent 有 有 有 例 ...

  10. [转]File Descriptor泄漏导致Crash: Too many open files

    在实际的Android开发过程中,我们遇到了一些奇奇怪怪的Crash,通过sigaction再配合libcorkscrew以及一些第三方的Crash Reporter都捕获不到发生Crash的具体信息 ...