UVA - 11134

We would like to place n rooks, 1 ≤ n ≤ 5000, on a n × n board subject to the following restrictions

  • The i-th rook can only be placed within the rectan- gle given by its left-upper corner (xli,yli) and its right- lower corner (xri,yri), where 1 ≤ i ≤ n, 1 ≤ xli ≤ xri ≤n,1≤yli ≤yri ≤n.

  • No two rooks can attack each other, that is no two rooks can occupy the same column or the same row.

    Input

    The input consists of several test cases. The first line of each
    of them contains one integer number, n, the side of the board. n lines follow giving the rectangles
    where the rooks can be placed as described above. The i-th line among them gives xli, yli, xri, and
    yri. The input file is terminated with the integer ‘0’ on a line by itself.

    Output

    Your task is to find such a placing of rooks that the above conditions are satisfied and then output n
    lines each giving the position of a rook in order in which their rectangles appeared in the input. If there
    are multiple solutions, any one will do. Output ‘IMPOSSIBLE’ if there is no such placing of the rooks.

    Sample Input

    8
    1122
    5788
    2255
    2255
    6386
    6385
    6388
    3678
    8
    1122
    5788
    2255
    2255
    6386
    6385
    6388
    3678
    0

    Sample Output

    11
    58
    24
    42
    73
    85
    66
    37
    11
    58
    24
    42
    73
    85
    66
    37


白书
在n*n的棋盘上面放n个车,能否使他们互相不攻击(即不能在同一行一列),并且第i个车必须落在第i的矩形范围(xl,yl, xr,yr)之内
行列可以分开求解,变成了区间问题
一开始想按r小大排序,r相同按l排序,然后依次选择行了
然而,应该是“对于每个位置,选择合法且r最小的”,这样排序并不能保证
只好n^2暴力找了
 
//
// main.cpp
// uva11134
//
// Created by Candy on 10/17/16.
// Copyright © 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=5e3+,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n;
int x[N],y[N];
struct data{
int id;
int l1,r1,l2,r2;
}a[N];
//bool cmp1(data &x,data &y){
// if(x.l1==y.l1) return x.r1<y.r1;
// else return x.l1<y.l1;
//}
//bool cmp2(data &x,data &y){
// if(x.l2==y.l2) return x.r2<y.r2;
// return x.l2<y.l2;
//}
//bool solve(){
// sort(a+1,a+1+n,cmp1);
// int p=1;
// for(int i=1;i<=n;i++){
// //printf("hi%d %d %d %d\n",i,a[i].l1,a[i].r1,a[i].id);
// if(a[p].l1<=i&&i<=a[p].r1) x[a[p++].id]=i;
// else if(a[p].r1<i||a[p].l1>i) return 0;
// }
//
// sort(a+1,a+1+n,cmp2);
// p=1;
// for(int i=1;i<=n;i++){
// //printf("ih%d %d %d %d\n",i,a[i].l2,a[i].r2,a[i].id);
// if(a[p].l2<=i&&i<=a[p].r2) y[a[p++].id]=i;
// else if(a[p].r2<i||a[p].l2>i) return 0;
// }
// return 1;
//}
bool sol(){
memset(x,,sizeof(x));
memset(y,,sizeof(y));
for(int i=;i<=n;i++){
int rook=,mnr=INF;
for(int j=;j<=n;j++)
if(!x[j]&&a[j].l1<=i&&a[j].r1<mnr) rook=j,mnr=a[j].r1;
//printf("rook1 %d\n",rook);
if(rook==||a[rook].r1<i) return false;
x[rook]=i;
}
for(int i=;i<=n;i++){
int rook=,mnr=INF;
for(int j=;j<=n;j++)
if(!y[j]&&a[j].l2<=i&&a[j].r2<mnr) rook=j,mnr=a[j].r2;
//printf("rook2 %d\n",rook);
if(rook==||a[rook].r2<i) return false;
y[rook]=i;
}
return ;
}
int main(int argc, const char * argv[]) {
while((n=read())){
for(int i=;i<=n;i++){
a[i].id=i;
a[i].l1=read();a[i].l2=read();a[i].r1=read();a[i].r2=read();
}
if(sol()){
for(int i=;i<=n;i++) printf("%d %d\n",x[i],y[i]);
}else printf("IMPOSSIBLE\n");
} return ;
}

UVA - 11134 Fabled Rooks[贪心 问题分解]的更多相关文章

  1. UVA 11134 Fabled Rooks 贪心

    题目链接:UVA - 11134 题意描述:在一个n*n(1<=n<=5000)的棋盘上放置n个车,每个车都只能在给定的一个矩形里放置,使其n个车两两不在同一行和同一列,判断并给出解决方案 ...

  2. UVA 11134 - Fabled Rooks(贪心+优先队列)

    We would like to place  n  rooks, 1 ≤  n  ≤ 5000, on a  n×n  board subject to the following restrict ...

  3. UVa 11134 - Fabled Rooks——[问题分解、贪心法]

    We would like to place n rooks, ≤ n ≤ , on a n × n board subject to the following restrictions • The ...

  4. uva 11134 - Fabled Rooks(问题转换+优先队列)

    题目链接:uva 11134 - Fabled Rooks 题目大意:给出n,表示要在n*n的矩阵上放置n个车,并且保证第i辆车在第i个区间上,每个区间给出左上角和右小角的坐标.另要求任意两个车之间不 ...

  5. UVa 11134 Fabled Rooks (贪心+问题分解)

    题意:在一个n*n的棋盘上放n个车,让它们不互相攻击,并且第i辆车在给定的小矩形内. 析:说实话,一看这个题真是没思路,后来看了分析,原来这个列和行是没有任何关系的,我们可以分开看, 把它变成两个一维 ...

  6. UVA - 11134 Fabled Rooks问题分解,贪心

    题目:点击打开题目链接 思路:为了满足所有的车不能相互攻击,就要保证所有的车不同行不同列,于是可以发现,行与列是无关的,因此题目可以拆解为两个一维问题,即在区间[1-n]之间选择n个不同的整数,使得第 ...

  7. uva 11134 fabled rooks (贪心)——yhx

    We would like to place n rooks, 1 n 5000, on a n nboard subject to the following restrictions• The i ...

  8. UVa 11134 - Fabled Rooks 优先队列,贪心 难度: 0

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  9. UVA 11134 Fabled Rooks(贪心的妙用+memset误用警示)

    题目链接: https://cn.vjudge.net/problem/UVA-11134 /* 问题 输入棋盘的规模和车的数量n(1=<n<=5000),接着输入n辆车的所能在的矩阵的范 ...

随机推荐

  1. 开源UML工具推荐

    1.StarUML StarUML是一个开源UML项目,可以开发快速,灵活,可扩展,多功能并且免费的UML/MDA平台.此项目运行在Win32平台之上.StarUML项目的目标是成为RationalR ...

  2. Javaweb学习笔记——使用Jdom解析xml

    一.前言 Jdom是什么? Jdom是一个开源项目,基于树形结构,利用纯java的技术对XML文档实现解析,生成,序列化以及多种操作.它是直接为java编程服务,利用java语言的特性(方法重载,集合 ...

  3. Java--正则表达式-简单的在字符串中找数字

    import org.junit.Test; import java.util.regex.Matcher; import java.util.regex.Pattern; public class ...

  4. WCF入门教程1——WCF简要介绍

    什么是WCF Windows Communication Foundation(WCF)是由微软开发的一系列支持数据通信的应用程序框架,可以翻译为Windows 通讯开发平台. 整合了原有的windo ...

  5. 分享20个最新的免费 UI 设计素材给设计师

    用户界面设计涉及到很多的创意,灵感以及需要与客户进行有效沟通的技能.良好的用户界面是一致的,可以使网站更容易理解和使用.UI设计的重点在于用户体验和互动,同时易于使用对于一个成功的移动应用程序来说非常 ...

  6. compileDebugJavaWithJavac

    学习笔记 compileDebugJavaWithJavac,缺少插件,在module app gradle文件最上面添加一段 apply plugin: 'me.tatarka.retrolambd ...

  7. 友盟SDK实现分享

    友盟SDK文档已经写得很详细了,这边整理笔记,先过一遍流程: 1⃣️注册友盟账号以获取Appkey,下面以分享到微信为例 2⃣️申请第三方账号是因为要进行分享.授权这样的操作肯定是要通过第三方的审核( ...

  8. 【代码笔记】iOS-下拉菜单

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewController ...

  9. Mybatis基于注解的方式访问数据库

    1. 使用方式:在Service层直接调用 package com.disappearwind.service; import org.springframework.beans.factory.an ...

  10. org.hibernate.HibernateException: No Hibernate Session bound to thread, and configuration does not allow creation of non-transactional one here

    org.hibernate.HibernateException: No Hibernate Session bound to thread, and configuration does not a ...