正题

题目链接:https://www.luogu.com.cn/problem/P5363


题目大意

\(1\times n\)的网格上有\(m\)个硬币,两个人轮流向前移动一个硬币但是不能超过前一个硬币,无法移动者输。

求有多少种情况先手必胜。


解题思路

竟然有我会的题,我感动

位置做差分再减去\(1\)之后就是一个经典的阶梯博弈问题了,结论就是奇数位置的异或和。

但是这题是计数,先让\(n\)减去\(m\),然后正难则反考虑求总方案和后手必胜的情况,这样问题就变为有多少个长度为\(m\)的非负整数序列满足它们的和不超过\(n\)且奇数位置的异或和为\(0\)。

考虑枚举奇数位置的和,奇数位置个数为\(z=\lfloor\frac{m+1}{2}\rfloor\),设\(f_i\)表示\(z\)个数的和为\(i\)时异或和为\(0\)的方案数,这个状态直接计算起来很难搞。

可以枚举每一个位的\(1\)的数量,显然每一个位的\(1\)数量肯是偶数。然后用组合数转移即可。

然后设\(g_i\)表示\(m-z\)个数和不超过\(i\)的方案数,那么有\(g_i=\sum_{j=0}^i\binom{j+m-z-1}{m-z-1}\),前缀和转移就好了。

然后答案就是\(\binom{n+m}{m}-\sum_{i=0}^nf_ig_{n-i}\)(注意这里的\(n\)已经减去\(m\)了),因为模数不是质数直接杨辉三角求就好了。

时间复杂度\(O(nm\log m)\),当然肯定是跑不满的


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e5,P=1e9+9;
ll n,m,ans,c[N][51],f[N],g[N];
signed main()
{
scanf("%lld%lld",&n,&m);ans=0;
if(n<=m)return puts("0")&0;
c[0][0]=1;
for(ll i=1;i<=n;i++)
for(ll j=0;j<=min(i,m);j++)
c[i][j]=((j?c[i-1][j-1]:0)+c[i-1][j])%P;
n-=m;ll z=(m+1)/2;
f[0]=1;
for(ll i=1;i<=18;i++)
for(ll j=n;j>=0;j--)
for(ll k=1;k<=z/2;k++){
if(j<(k*(1<<i)))break;
(f[j]+=f[j-k*(1<<i)]*c[z][2*k]%P)%=P;
}
for(ll i=0;i<=n;i++)
g[i]=(g[i-1]+c[i+m-z-1][m-z-1])%P;
for(ll i=0;i<=n;i++)
(ans+=f[i]*g[n-i]%P)%=P;
printf("%lld\n",(c[n+m][m]-ans+P)%P);
return 0;
}

P5363-[SDOI2019]移动金币【阶梯博弈,dp,组合数学】的更多相关文章

  1. # [SDOI2019]移动金币 阶梯博弈 dp

    [SDOI移动金币 链接 vijos 思路 阶梯博弈,dp统计. 参见wxyww 代码 #include <bits/stdc++.h> using namespace std; cons ...

  2. Luogu5363 SDOI2019移动金币(博弈+动态规划)

    容易想到可以转化为一个有m堆石子,石子总数不超过n-m的阶梯博弈.阶梯博弈的结论是相当于只考虑奇数层石子的nim游戏. nim和不为0不好算,于是用总方案数减掉nim和为0的方案数.然后考虑dp,按位 ...

  3. Luogu P5363 [SDOI2019]移动金币

    话说这题放在智推里好久了的说,再不写掉对不起自己233 首先你要知道一个叫做阶梯Nim的东西,具体的可以看这篇博客 那么我们发现这和这道题的关系就很明显了,我们把两个金币之间的距离看作阶梯Nim的每一 ...

  4. HDU 4315 Climbing the Hill (阶梯博弈转尼姆博弈)

    Climbing the Hill Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Su ...

  5. POJ1704 Georgia and Bob (阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %I64d & %I64u Subm ...

  6. HDU 4315:Climbing the Hill(阶梯博弈)

    http://acm.hdu.edu.cn/showproblem.php?pid=4315 题意:有n个人要往坐标为0的地方移动,他们分别有一个位置a[i],其中最靠近0的第k个人是king,移动的 ...

  7. hdu 3389 Game (阶梯博弈)

    #include<stdio.h> int main() { int t,n,ans; int i,j,x; scanf("%d",&t); ;j<=t; ...

  8. HDU 5623 KK's Number (博弈DP)

    KK's Number 题目链接: http://acm.hust.edu.cn/vjudge/contest/121332#problem/K Description Our lovely KK h ...

  9. poj 1704 阶梯博弈

    转自http://blog.sina.com.cn/s/blog_63e4cf2f0100tq4i.html 今天在POJ做了一道博弈题..进而了解到了阶梯博弈...下面阐述一下我对于阶梯博弈的理解. ...

随机推荐

  1. arthas-Java诊断工具

    Arthas 是Alibaba开源的Java诊断工具,深受开发者喜爱. 官网:https://arthas.aliyun.com/zh-cn/ 当你遇到以下类似问题而束手无策时,Arthas可以帮助你 ...

  2. 综合练习——寻找有潜力的bilibili百大UP主(1)

    寻找有潜力的bilibili百大UP主(1) 防喷说明:以下仅为个人学习之余的娱乐项目,本人不主动赋予以下内容任何价值,不确保内容的准确性 欢迎各位友善的指出错误 目录 寻找有潜力的bilibili百 ...

  3. ant的javac任务的相关属性配置

    任务和javac命令是相似,它编译两种类型的Java文件1)没有被编译的java文件2)曾经编译过,但是class文件版本和当前对应的java文件版本不匹配的java文件. 1)javac命令支持的参 ...

  4. Java HdAcm1174

    空间一般直线的方程是:(x-x0)/a=(y-y0)/b=(z-z0)/c,这是一条过(x0,y0,z0),方向矢量为{a,b,c}的直线.假设已知点的坐标是A(e,f,g),过A点,且与{a,b,c ...

  5. IDEA快捷键命令

    Ctrl+Alt+T   IDEl 抛异常快捷键ctrl +o  继承类时 继承方法快捷键Ctrl+Alt+左右方向键  回到上次光标停留的地方ALt +left/right  快速切换两个页面ctr ...

  6. C# ArrayPool 源码解读之 byte[] 池化

    一:背景 1. 讲故事最近在分析一个 dump 的过程中发现其在 gen2 和 LOH 上有不少size较大的free,仔细看了下,这些free生前大多都是模板引擎生成的html片段的byte[]数组 ...

  7. 微信小程序的button按钮设置宽度无效

    亲,你是不是也遇到了微信小程序的button按钮设置宽度无效.让我来告诉你怎么弄 方法1. 样式中加入!important,即:width: 100% !important; wxss代码示例 1 2 ...

  8. 面试官:如何实现LRU?你学会了吗?

    面试官:来了,老弟,LRU缓存实现一下? 我:直接LinkedHashMap就好了. 面试官:不要用现有的实现,自己实现一个. 我:..... 面试官:回去等消息吧.... 大家好,我是程序员学长,今 ...

  9. 性能环境之docker操作指南4(全网最全)

    容器的常用操作 docker run -i -t  /bin/bash 使用image创建container并进入交互模式, login shell是/bin/bash 实例: $ docker ru ...

  10. MyBatis学习总结(三)——MyBatis配置文件配置的优化

    一.连接数据库的配置单独放在一个properties文件中 上文 连接数据库的配置写在 mybatisConf.xml中,本文直接放在 db.properties 中, 在mybatisConf.xm ...