MPC算法

一.    引言

在工程技术方面,MPC全称可指Model Predictive Control模型预测控制(又称RHC, Receding Horizon  )。

模型预测控制算法

一种进阶过程控制方法,自1980年以来开始在化工炼油等过程工业得到应用,并在经济领域开始得到应用。

MPC是一种多变量控制策略,其中涉及了:

过程内环动态模型;控制量的历史数值;在预测区间上的一个最优值方程J。最优控制量可由以上各量求出。

MPC最大的特点在于,相对于LQR控制而言,MPC可以考虑空间状态变量的各种约束,而LQR,PID等控制只能够考虑输入输出变量的各种约束。

MPC可应用于线性和非线性系统

在当今过程控制中,PID当然是用的最多的控制方法,但MPC也超过了10%的占有率。MPC是一个总称,有着各种各样的算法。其动态矩阵控制(DMC)是代表作。DMC采用的是系统的阶跃响应曲线,其突出的特点是解决了约束控制问题。那么是DMC是怎么解决约束的呢?在这里只给出宏观的解释,而不做详细的说明。DMC把线性规划和控制问题结合起来,用线性规划解决输出约束的问题,同时解决了静态最优的问题,一石二鸟,在工业界取得了极大的成功。

如下图所示为一个MIMO系统u1,u2输入与y1,y2输出相互影响。如果使用PID控制的话,每一个子系统单独设计一个PID控制器,两个相互影响的子系统没有任何的交联,使得系统难以设计,如果像图二一样设计一个较大的系统,则参数较多难以实现,而使用MPC控制器的话可以较好的解决两种问题,综合相互间的影响来设计参数。

二.    作用机理

MPC作用机理描述为:在每一个采用时刻,根据获得的当前测量信息,在线求解一个有限时间开环优化问题,并将得到的控制序列的第一个元素作用于被控对象。在下一个采样时刻,重复上述过程:用新的测量值作为此时预测系统未来动态的初始条件,刷新优化问题并重新求解 。

即MPC算法包括三个步骤:

(1)预测系统未来动态;

(2)(数值)求解开环优化问题;

(3)将优化解的第一个元素(或者说第一部分)作用于系统

这三步是在每个采样时刻重复进行的,且无论采用什么样的模型,每个采样时刻得到的测量值都作为当前时刻预测系统未来动态的初始条件

在线求解开环优化问题获得开环优化序列是MPC和传统控制方法的主要区别,因为后者通常是离线求解一个反馈控制律,并将得到的反馈控制律一直作用于系统。

在这里给出两点说明:

1.MPC是一个反馈控制策略,但是之前不是说将得到的控制序列中的第一个元素作用于被控对象,求解开环问题。那么哪来的反馈呢?

实际上在下一个采样周期,下一时刻的测量值又被使用上了,用下一时刻的测量值求解下一时刻的控制值。故这是一个反馈控制策略

2.传统的控制方法为什么被称为离线控制?

设计变阻器应有的级数来达到控制并励直流电动机启动的例子,那么如何看的出来是离线控制呢?其实很简单,在起始的时候就已经把每级电阻值就给定出来了,但是实际上是否能如理论计算的这样呢?比如我电压突然受到了扰动了怎么办?那么这个计算的每级电阻值肯定不对了啦,但是传统的控制方法对此确是无能为力的,因为每级启动电阻在最早的时候已经计算好了的。

三.    MPC的基本特点

不管是何种算法,他们的基本特点都是:基于模型的预测、滚动优化和前馈-反馈的控制结构。

1.基于模型的预测

在MPC算法中,需要一个描述对象动态行为的模型,这个模型的作用是预测系统未来的动态。即能够根据系统k时刻的状态和k时刻的控制输入,预测到k+1时刻的输出。在这里k时刻的输入正是用来控制系统k+1时间的输出,使其最大限度的接近k+1时刻的期望值。故我们强调的是该模型的预测作用,而不是模型的形式。

在这里我重点讲解一下状态空间模型。那么什么是状态?输出是不是也是状态的一种?对的,输出也是一种状态,只不过我们赋予了这个状态特殊的意义。举个例子来说,舞龙,假设是只能通过龙尾的人A指挥前面一个人B动作,然后B指挥他前面的一个人C动作….依次如此,达到控制龙头的人F叼住绣球的动作。如果只关注龙头的人(输出)和龙尾的人(输入),而忽略龙身子的动态,那就是所谓的输入—输出系统。经典控制理论就是建立在输入—输出系统的基础上面的。 但是我如果不管要管龙尾和龙头的人,我连龙身子上面的人也要要求在固定的位置,那么这就是状态空间的概念,即我对系统中的每一个状态都要控制到。龙头位置的人也是一个状态,故输出本身就是一个状态,或者说是状态的一个组合。

2.滚动优化

因为外部干扰和模型失配的影响,系统的预测输出和实际输出存在着偏差,如果测量值能测到这个偏差,那么在下一时刻能根据这个测量到偏差的测量值在线求解下一时刻的控制输入,即优化掉了这个偏差值。若将求解的控制输出的全部序列作用于系统,那么k+1时刻的测量值不能影响控制动作,也就是说测量值所包括的外部干扰或模型误差信息得不到有效利用。故我们将每个采样时刻的优化解的第一个分量作用于系统,在下一个采用时刻,根据新得到的测量值为初始条件重新预测系统的未来输出并求解优化解,继续讲这个时刻的优化解的第一个分量作用于系统,这样重复至无穷。

故预测控制不是采用一个不变的全局优化目标,而是采用时间向前滚动式的有限时域优化策略。这也就是意味着优化过程不是一次离线进行,而是反复在线进行的。

3.前馈-反馈的控制结构

这个在前面给出的两点说明中的第一点就已经给出了。

四. MPC参数选择

选择一个好的参数不仅影响MPC控制的性能,而且还会影响到MPC每一个timestep内进行在线优化的计算复杂度。这里将会给出关于控制器采样周期、预测及控制范围(prediction and control)、约束及权重。

采样周期的选择

采样周期过大,则系统反应过慢导致难以及时进行修正控制,而采样周期过小,则会导致系统产生大量的在线优化计算,给系统带来较大的开销。因而建议采样周期设计采用开环响应时间(10~90%上升时间)的十分之一或二十分之一:

MPC算法的更多相关文章

  1. 基于MPC算法的车辆多目标自适应巡航控制系统研究_荆亚杰

  2. MPC学习笔记1:基于状态空间模型的预测控制(2)

    基于估计的无约束预测控制 1.引言 基本上这两个部分都是在线性理论的框架下,利用状态空间法来建模.求解控制律.状态空间模型在理论分析上具有很强的优越性,但实际应用中能直接准确且经济地获取系统状态并不容 ...

  3. 无人驾驶——4.控制之MPC模型预测控制

    源自:<无人驾驶无人驾驶车辆模型预测控制>——龚建伟 参考:https://wenku.baidu.com/view/8e4633d519e8b8f67c1cb9fa.html 0.车辆模 ...

  4. 模型预测控制(MPC)简介

    1.引言 在当今过程控制中,PID当然是用的最多的控制方法,但MPC也超过了10%的占有率.MPC是一个总称,有着各种各样的算法.其动态矩阵控制(DMC)是代表作.DMC采用的是系统的阶跃响应曲线,其 ...

  5. vlc/ffmepg/mplayer/gstreamer/openmax/mpc/ffdshow/directshow

    一些应该学习的开源框架与库用途和差别 一.播放器层次 这个层次上,是直接可以用的软件,已经做完了一切工作,如果我们需要用他们,是不需要写一行代码的,编译通过就可以拿来使用了,对于国内这些山寨公司来说, ...

  6. MPC学习笔记1:基于状态空间模型的预测控制(1)

    MPC调节器 1.给定一个由状态空间法描述的离散系统: MPC控制器与其他线性二次调节器(LQR)的区别就在于其可以很好的将系统动态约束纳入考虑. 采样周期Ts控制了算法的效率,太大会错过很多系统运行 ...

  7. 车辆运动控制算法——MPC

    MPC是模型预测控制算法,在车辆运动跟踪轨迹的控制中发挥很大的优势 基础的不多说,下面记录我对LQR/MPC/二次规划问题的理解 我们从LQR来引出MPC LQR的能量函数,目的是求函数J最小,即用最 ...

  8. B树——算法导论(25)

    B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...

  9. 分布式系列文章——Paxos算法原理与推导

    Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资 ...

随机推荐

  1. 【转】如何用MTR诊断网络问题

    MTR 是一个强大的网络诊断工具,管理员能够用它诊断和隔离网络错误,并向上游提供商提供有关网络状态的有用报告.MTR 通过更大的采样来跟踪路由,就像 traceroute + ping 命令的组合.本 ...

  2. DVWA之Command Injection

    Command Injection Command Injection,即命令注入,是指通过提交恶意构造的参数破坏命令语句结构,从而达到执行恶意命令的目的.PHP命令注入攻击漏洞是PHP应用程序中常见 ...

  3. CVE-2011-0104:Microsoft Office Excel 栈溢出漏洞修复分析

    0x01 前言 上一篇讲到了 CVE-2011-0104 漏洞的成因和分析的方法,并没有对修复后的程序做分析.之后在一次偶然的情况下,想看一看是怎么修复的,结果却发现了一些问题 环境:修复后的 EXC ...

  4. Win64 驱动内核编程-27.强制读写受保护的内存

    强制读写受保护的内存 某些时候我们需要读写别的进程的内存,某些时候别的进程已经对自己的内存读写做了保护,这里说四个思路(两个R3的,两个R0的). 方案1(R3):直接修改别人内存 最基本的也最简单的 ...

  5. 15.PHP_PHP与Ajax

    PHP与Ajax 刚刚下班回来地铁上看的这一章,觉得这东西思路可以.确实解决了WEB的两个大的问题,流量和计算量问题.简单说下我的理解,然后在根据资料整理下学习笔记. 两个问题: 1.展示一个WEB网 ...

  6. React-列表 & Key

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <title&g ...

  7. (邹博ML)数学分析与概率论

    机器学习入门 深度学习和机器学习? 深度学习在某种意义上可以认为是机器学习的一个分支,只是这个分支非常全面且重要,以至于可以单独作为一门学科来进行研究. 回忆知识 求解S. 对数函数的上升速度 我们使 ...

  8. thinkphp 中区块block和模板继承extend用法举例

    1.介绍 模板继承其实并不难理解,就好比类的继承一样,模板也可以定义一个基础模板(或者是布局),并且其中定义相关的区块(block),然后继承(extend)该基础模板的子模板中就可以对基础模板中定义 ...

  9. layui中的分页laypage

    1.html部分 <div id="test1"></div> 2.js部分: <script src="/static/build/lay ...

  10. Django(15)外键和表关系

    外键删除操作 如果一个模型使用了外键.那么在对方那个模型被删掉后,该进行什么样的操作.可以通过on_delete来指定.可以指定的类型如下: CASCADE:级联操作.如果外键对应的那条数据被删除了, ...