前言

数据来源于王法辉教授的GIS和数量方法,以后有空,我会利用python来实现里面的案例,这里向王法辉教授致敬。

绘制普查人口密度格局

使用属性查询提取区边界

import numpy as np
import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt
import arcpy
from arcpy import env
plt.style.use('ggplot')#使用ggplot样式
%matplotlib inline#输出在线图片
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']# 替换sans-serif字体为黑体
plt.rcParams['axes.unicode_minus'] = False # 解决坐标轴负数的负号显示问题
regions = gpd.GeoDataFrame.from_file('../Census.gdb',layer='County')
regions

BRTrt = regions[regions.NAMELSAD10=='East Baton Rouge Parish']

投影

BRTrt = BRTrt.to_crs('EPSG:26915')
BRTrt.crs

BRTrt.to_file('BRTrt.shp')

裁剪数据

Tract = gpd.GeoDataFrame.from_file('../Census.gdb',layer='Tract')
Tract = Tract.to_crs('EPSG:26915')
TractUtm = gpd.GeoDataFrame.from_file('TractUtm.shp')
BRTrtUtm = gpd.GeoDataFrame.from_file('BRTrt.shp')
# Set workspace
env.workspace = r"MyProject" # Set local variables
in_features = "TractUtm.shp"
clip_features = "BRTrt.shp"
out_feature_class = "BRTrtUtm.shp"
xy_tolerance = "" # Execute Clip
arcpy.Clip_analysis(in_features, clip_features, out_feature_class, xy_tolerance)

计算面积和人口密度

BRTrtUtm = gpd.GeoDataFrame.from_file('BRTrtUtm.shp')
BRTrtUtm['area'] = BRTrtUtm.area/1000000
## 计算人口密度
BRTrtUtm['PopuDen'] = BRTrtUtm['DP0010001']/BRTrtUtm['area']
BRTrtUtm.to_file('BRTrtUtm.shp')

描述统计

BRTrtUtm['PopuDen'].describe()

人口密度图

fig = plt.figure(figsize=(12,12)) #设置画布大小
ax = plt.gca()
ax.set_title("巴吞鲁日市2010年人口密度模式",fontsize=24,loc='center')
BRTrtUtm.plot(ax=ax,column='PopuDen',linewidth=0.5,cmap='Reds'
,edgecolor='k',legend=True,)
# plt.savefig('巴吞鲁日市2010年人口密度模式.jpg',dpi=300) plt.show()

分析同心环区的人口密度格式

生成同心环

## 两种方法生成多重缓冲区的阈值
dis = list(np.arange(2000,26001,2000))
dis
dis = list(range(2000,26001,2000))
dis

## 真的特别神奇distances只有这样写列表才可以运行

# Set local variables
inFeatures = "BRCenter"
outFeatureClass = "rings.shp"
distances = [2000, 4000, 6000, 8000, 10000,
12000, 14000, 16000, 18000,
20000, 22000, 24000, 26000]
bufferUnit = "meters" # Execute MultipleRingBuffer
arcpy.MultipleRingBuffer_analysis(inFeatures, outFeatureClass, distances, bufferUnit, "", "ALL")

相交

try:
# Set the workspace (to avoid having to type in the full path to the data every time)
arcpy.env.workspace = "MyProject" # Process: Find all stream crossings (points)
inFeatures = ["rings", "BRTrtUtm"]
intersectOutput = "TrtRings.shp"
arcpy.Intersect_analysis(inFeatures, intersectOutput,) except Exception as err:
print(err.args[0])
TrtRings = gpd.GeoDataFrame.from_file('TrtRings.shp')
TrtRings['area'] = TrtRings.area/1000000
TrtRings['EstPopu'] = TrtRings['PopuDen'] * TrtRings['POLY_AREA']

融合

arcpy.env.workspace = "C:/data/Portland.gdb/Taxlots"

# Set local variables
inFeatures = "TrtRings"
outFeatureClass = "DissRings.shp"
dissolveFields = ["distance"]
statistics_fields = [["POLY_AREA","SUM"], ["PopuDen","SUM"]] # Execute Dissolve using LANDUSE and TAXCODE as Dissolve Fields arcpy.Dissolve_management(inFeatures, outFeatureClass, dissolveFields, statistics_fields,)
DissRings = gpd.GeoDataFrame.from_file('DissRings.shp')
DissRings

DissRings['PopuDen'] = DissRings['SUM_PopuDe'] / DissRings['SUM_POLY_A']
DissRings.set_index('distance',inplace=True)
DissRings['PopuDen'].plot(kind='bar',x='distance',
xlabel='',figsize=(8,6))
plt.savefig('同心环人口密度图.jpg',dpi=300)
plt.show()

要素转点

# Set environment settings
env.workspace = "BR.gdb" # Set local variables
inFeatures = "BRBlkUtm"
outFeatureClass = "BRBlkPt.shp" # Use FeatureToPoint function to find a point inside each park
arcpy.FeatureToPoint_management(inFeatures, outFeatureClass, "INSIDE")

标识

env.workspace = "MyProject"

# Set local parameters
inFeatures = "BRBlkPt"
idFeatures = "DissRings"
outFeatures = "BRBlkPt_Identity.shp" # Process: Use the Identity function
arcpy.Identity_analysis(inFeatures, idFeatures, outFeatures)

数据筛选

BRBlkPt_Identity = gpd.GeoDataFrame.from_file('BRBlkPt_Identity.shp')
BRBlkPt_Identity.shape

BRBlkPt_Identity.tail()

## 选取数据
BRBlkPt_Identity = BRBlkPt_Identity[~(BRBlkPt_Identity['distance']==0.0)]

数据分组

rigs_data = pd.DataFrame(BRBlkPt_Identity.groupby(by=['distance'])['POP10'].sum(),columns=['POP10'])
rigs_data.reset_index(inplace=True)
rigs_data

数据连接

EstPopu = BRBlkPt_Identity[['distance','SUM_POLY_A','SUM_PopuDe']]
PopuDen = pd.merge(rigs_data,EstPopu,how='inner',left_on='distance',right_on='distance') ## 删除重复值,按理来说,应该没有重复值了,可以试试外连接
PopuDen.drop_duplicates(inplace = True)

分析和比较环形区人口和密度估值

PopuDen.set_index('distance',inplace=True)
PopuDen['EstPopu'] = PopuDen['SUM_PopuDe'] / PopuDen['SUM_POLY_A']
PopuDen['PopuDen1'] = PopuDen['POP10'] / PopuDen['SUM_POLY_A']
PopuDen['EstPopu'].plot(figsize=(10,6),marker='o',xlabel='距离(米)',ylabel='密度(人/平方千米)')
PopuDen['PopuDen1'].plot(marker='s',xlabel='距离(米)',ylabel='密度(人/平方千米)') plt.legend(['基于街道','基于普查区'])
plt.savefig('基于普查区和街区数据的人口密度模式对比.jpg',dpi=300)
plt.show()

总结

2022年的第一次写笔记,写的不是很好,而且发现许多问题,比如就是geopandas里面的area和arcpy里面的area不一样,可能是算法不一样,面积要使用投影坐标系,我相信这个应该没有人不知道了吧,要对ArcGIS Pro里面的arcpy大赞。最近感谢也比较多,比如疫情,已经有点常态化,很影响我们的生活了。心怀感恩,希望我们都有美好的未来。春燕归,巢于林木。接下来一段时间,我要忙我的毕业论文,可能会比较忙,需要数据的可以联系我。

利用python绘制分析路易斯安那州巴吞鲁日市的人口密度格局的更多相关文章

  1. Louis Armstrong【路易斯·阿姆斯特朗】

    Louis Armstrong Louis Armstrong had two famous nicknames. 路易斯·阿姆斯特朗有两个著名的绰号. Some people called him ...

  2. 利用Python绘制一个正方形螺旋线

    1 安装turtle Python2安装命令: pip install turtule Python3安装命令: pip3 install turtle 因为turtle库主要是在Python2中使用 ...

  3. 如何利用Python绘制一个爱心

    刚学习Python几周,闲来无事,突然想尝试画一个爱心,步骤如下: 打开界面 打开Python shell界面,具体是Python语言的IDLE软件脚本. 2.建立脚本 单击左上角’File’,再单击 ...

  4. Python 学习记录----利用Python绘制奥运五环

    import turtle #导入turtle模块 turtle.color("blue") #定义颜色 turtle.penup() #penup和pendown()设置画笔抬起 ...

  5. 利用Python进行数据分析 第4章 IPython的安装与使用简述

    本篇开始,结合前面所学的Python基础,开始进行实战学习.学习书目为<利用Python进行数据分析>韦斯-麦金尼 著. 之前跳过本书的前述基础部分(因为跟之前所学的<Python基 ...

  6. 【Python 16】分形树绘制4.0(利用递归函数绘制分形树fractal tree)

     1.案例描述 树干为80,分叉角度为20,树枝长度小于5则停止.树枝长小于30,可以当作树叶了,树叶部分为绿色,其余为树干部分设为棕色. 2.案例分析 由于分形树具有对称性,自相似性,所以我们可以用 ...

  7. Python股票分析系列——数据整理和绘制.p2

    该系列视频已经搬运至bilibili: 点击查看 欢迎来到Python for Finance教程系列的第2部分. 在本教程中,我们将利用我们的股票数据进一步分解一些基本的数据操作和可视化. 我们将要 ...

  8. 利用Python进行异常值分析实例代码

    利用Python进行异常值分析实例代码 异常值是指样本中的个别值,也称为离群点,其数值明显偏离其余的观测值.常用检测方法3σ原则和箱型图.其中,3σ原则只适用服从正态分布的数据.在3σ原则下,异常值被 ...

  9. 利用Python分析GP服务运行结果的输出路径 & 实现服务输出路径的本地化 分类: Python ArcGIS for desktop ArcGIS for server 2015-08-06 19:49 3人阅读 评论(0) 收藏

    最近,一直纠结一个问题:做好的GP模型或者脚本在本地运行,一切正常:发布为GP服务以后时而可以运行成功,而更多的是运行失败,甚至不能知晓运行成功后的结果输出在哪里. 铺天盖地的文档告诉我,如下信息: ...

随机推荐

  1. 采集 base64 编码的图片

    问题 爬虫抓取网页的时候,遇到有的图片是 base64 编码的格式,要怎样下载到本地呢? 示例:base64 编码的 img 标签 <!-- 内容太长省略一部分 --> <img s ...

  2. JDK ThreadPoolExecutor核心原理与实践

    一.内容概括 本文内容主要围绕JDK中的ThreadPoolExecutor展开,首先描述了ThreadPoolExecutor的构造流程以及内部状态管理的机理,随后用大量篇幅深入源码探究了Threa ...

  3. CF749A Bachgold Problem 题解

    Content 给定一个数 \(n\),求它最多能够拆分成多少个质数,并输出拆分成的每一个质数. 数据范围:\(2\leqslant n\leqslant 10^5\). Solution 我们考虑尽 ...

  4. CF1059A Cashier 题解

    Content 定义一天长度为 \(L\),每次休息的时间为 \(a\).一天会有 \(n\) 个客人到访,第 \(i\) 个客人会在 \(t_i\) 的时刻到访,会停留 \(l_i\) 的时间.只有 ...

  5. Asp.Net Core基础篇之:白话管道中间件

    在Asp.Net Core中,管道往往伴随着请求一起出现.客户端发起Http请求,服务端去响应这个请求,之间的过程都在管道内进行. 举一个生活中比较常见的例子:旅游景区. 我们都知道,有些景区大门离景 ...

  6. Raft论文概述

    介绍 Raft是一种为了管理复制日志的一致性算法.为了提升可理解性,Raft 将一致性算法分解成了几个关键模块,例如领导人选举.日志复制和安全性.同时它通过实施一个更强的一致性来减少需要考虑的状态的数 ...

  7. JavaScript 中的防抖和节流

    什么是防抖 函数防抖(debounce):当持续触发事件时,一定时间段内没有再触发事件,事件处理函数才会执行一次,如果设定的时间到来之前,又一次触发了事件,就重新开始延时.如下图,持续触发 scrol ...

  8. C语言获取字符年月日时分秒毫秒

    概述 本文演示环境: Windows10 使用C语言获取年月日时分秒毫秒, 代码 #include <iostream> #include <string> #include ...

  9. 【LeetCode】999. Available Captures for Rook 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力遍历 日期 题目地址:https://leetc ...

  10. 【LeetCode】963. Minimum Area Rectangle II 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 线段长+线段中心+字典 日期 题目地址:https: ...