剑指 Offer 13. 机器人的运动范围
剑指 Offer 13. 机器人的运动范围
地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1
输出:3
示例 2:
输入:m = 3, n = 1, k = 0
输出:1
提示:
- 1 <= n,m <= 100
- 0 <= k <= 20
一、深度优先遍历DFS
根据K神思路写的代码:
class Solution {
public int movingCount(int m, int n, int k) {
boolean[][] visited = new boolean[m][n];
return dfs(visited, m, n, k, 0, 0);
}
private int dfs(boolean[][] visited, int m, int n, int k, int i, int j) {
if(i >= m || j >= n || visited[i][j] || bitSum(i) + bitSum(j) > k) return 0;
visited[i][j] = true;
return 1 + dfs(visited, m, n, k, i + 1, j) + dfs(visited, m, n, k, i, j + 1) ;
}
private int bitSum(int n) {
int sum = 0;
while(n > 0) {
sum += n % 10;
n /= 10;
}
return sum;
}
}
注释版本:
class Solution {
// 棋盘的行列
int m, n;
// 记录位置是否被遍历过
boolean[][] visited;
public int movingCount(int m, int n, int k) {
this.m = m;
this.n = n;
visited = new boolean[m][n];
return dfs(0, 0, k);
}
private int dfs(int i, int j, int k) {
// i >= m || j >= n是边界条件的判断
if (i >= m || j >= n
// visited[i][j]判断这个格子是否被访问过
|| visited[i][j] == true
// k < sum(i, j)判断当前格子坐标是否满足条件
|| sum(i, j) > k) {
return 0;
}
// 标注这个格子被访问过
visited[i][j] = true;
// 沿着当前格子的右边和下边继续访问
return 1 + dfs(i + 1, j, k)
+ dfs(i, j + 1, k);
}
// 计算两个坐标数字的和
private int sum(int i, int j) {
int sum = 0;
while (i != 0) {
sum += i % 10;
i /= 10;
}
while (j != 0) {
sum += j % 10;
j /= 10;
}
return sum;
}
}
k神简洁的代码:
class Solution {
int m, n, k;
boolean[][] visited;
public int movingCount(int m, int n, int k) {
this.m = m; this.n = n; this.k = k;
this.visited = new boolean[m][n];
return dfs(0, 0, 0, 0);
}
public int dfs(int i, int j, int si, int sj) {
if(i >= m || j >= n || k < si + sj || visited[i][j]) return 0;
visited[i][j] = true;
return 1 + dfs(i + 1, j, (i + 1) % 10 != 0 ? si + 1 : si - 8, sj) + dfs(i, j + 1, si, (j + 1) % 10 != 0 ? sj + 1 : sj - 8);
}
}
二、广度优先遍历 BFS
- BFS/DFS : 两者目标都是遍历整个矩阵,不同点在于搜索顺序不同。DFS 是朝一个方向走到底,再回退,以此类推;BFS 则是按照“平推”的方式向前搜索。
- BFS 实现: 通常利用队列实现广度优先遍历。
这个代码:有点繁冗,但可以让小白看懂代码是如何运行的。
class Solution {
public int movingCount(int m, int n, int k) {
//状态:dp[i][j]代表第i,j个格子能否走到
boolean[][] dp = new boolean[m][n];
dp[0][0] = isValid(0, 0, k);
//转移方程
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if(i == 0 && j == 0) continue;
else if(i == 0) dp[i][j] = isValid(i, j, k) && dp[i][j - 1];
else if(j == 0) dp[i][j] = isValid(i, j, k) && dp[i - 1][j];
else dp[i][j] = isValid(i, j, k) && (dp[i - 1][j] || dp[i][j - 1]);
}
}
int count = 0;
for (boolean[] row : dp) {
for (boolean ele : row) {
if (ele) {
count++;
}
}
}
return count;
}
public boolean isValid(int i, int j, int k) {
int sum = 0;
while (i != 0) {
sum += i % 10;
i /= 10;
}
while (j != 0) {
sum += j % 10;
j /= 10;
}
return sum <= k;
}
}
这个代码是为了求sum又简化了代码,但跟k神比起确实还差一点。
public int movingCount(int m, int n, int k) {
boolean[][] nums = new boolean[m][n];
nums[0][0] = isValid(0, 0, k);
int sum = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == 0 && j == 0) {
continue;
} else if (i == 0) {
nums[i][j] = nums[i][j - 1] && isValid(i, j, k);
} else if (j==0) {
nums[i][j] = nums[i - 1][j] && isValid(i, j, k);
} else {
nums[i][j] = (nums[i - 1][j] || nums[i][j - 1]) && isValid(i, j, k);
}
if (nums[i][j]) sum++;
}
}
return sum;
}
public boolean isValid(int m, int n, int k) {
int sum = 0;
while (m != 0 || n != 0) {
if (m != 0) {
sum += m % 10;
m /= 10;
}
if (n != 0) {
sum += n % 10;
n /= 10;
}
}
return sum <= k;
}
}
k神更简洁的代码:
class Solution {
public int movingCount(int m, int n, int k) {
boolean[][] visited = new boolean[m][n];
int res = 0;
Queue<int[]> queue= new LinkedList<int[]>();
queue.add(new int[] { 0, 0, 0, 0 });
while(queue.size() > 0) {
int[] x = queue.poll();
int i = x[0], j = x[1], si = x[2], sj = x[3];
if(i >= m || j >= n || k < si + sj || visited[i][j]) continue;
visited[i][j] = true;
res ++;
queue.add(new int[] { i + 1, j, (i + 1) % 10 != 0 ? si + 1 : si - 8, sj });
queue.add(new int[] { i, j + 1, si, (j + 1) % 10 != 0 ? sj + 1 : sj - 8 });
}
return res;
}
}
剑指 Offer 13. 机器人的运动范围的更多相关文章
- 剑指 Offer 13. 机器人的运动范围 + 深搜 + 递归
剑指 Offer 13. 机器人的运动范围 题目链接 package com.walegarrett.offer; /** * @Author WaleGarrett * @Date 2020/12/ ...
- 【Java】 剑指offer(12) 机器人的运动范围
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 地上有一个m行n列的方格.一个机器人从坐标(0, 0)的格子开始移 ...
- Go语言实现:【剑指offer】机器人的运动范围
该题目来源于牛客网<剑指offer>专题. 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之 ...
- 剑指Offer 66. 机器人的运动范围 (回溯)
题目描述 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. 例如,当k为18时,机器人能 ...
- [剑指Offer] 66.机器人的运动范围
题目描述 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. 例如,当k为18时,机器人能 ...
- 剑指offer:机器人的运动范围(回溯法DFS)
题目描述 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. 例如,当k为18时,机器人能 ...
- 剑指offer——14机器人的运动范围
题目描述 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. 例如,当k为18时,机器人能 ...
- 剑指offer(13)-栈的压入、弹出序列 九度1366
题目来自剑指offer系列 九度 1366:http://ac.jobdu.com/problem.php?pid=1367 题目描述: 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列 ...
- 【Java】 剑指offer(13) 剪绳子
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n> ...
随机推荐
- 公钥-私钥 白名单-黑名单 Linux 远程访问及控制(SSH)
远程访问及控制一.SSH远程管理二.OpenSSH服务器① SSH (Secure Shell)协议② OpenSSH三.配置OpenSSH服务器举例四.sshd 服务支持两种验证方式五.使用SSH客 ...
- 检测当前手机正在运行的APP
import re #一定要引入,否则不提示错误,但找不到目标def jiance(sjh): aakk="adb -s {0} shell dumpsys activity activit ...
- adb 记录ADB执行记录
自动化测试需要获得当前的activity,来判断处于的页面是否正确: hierarchy view经常连不上真机,无法获得activity,所以直接用 adb命令来查看当前运行的 activity就可 ...
- 7Java基础补充
1.标准Java bean写法 包括:private修饰的成员变量.getter和setter以及无参和有多个参数的有参构造方法 2.String原理 String底层是字节数组byte[]. Str ...
- Docker与k8s的恩怨情仇(六)—— “容器编排”上演“终结者”大片
转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 在上节中,我们为大家介绍了Pod的基础内容,Kubernetes如何站在上帝视角上处理容器和容器之间的关系. ...
- 【动态规划】石子合并 luogu-1880
分析 简单的区间DP AC代码 #include <bits/stdc++.h> using namespace std; #define ms(a,b) memset(a,b,sizeo ...
- 如何选择数据分析工具?BI工具需要具备哪些功能?
数据分析使企业能够分析其所有数据(实时,历史,非结构化,结构化,定性),以识别模式并生成洞察力,以告知并在某些情况下使决策自动化,将数据情报与行动联系起来.当今最好的数据分析工具解决方案支持从访问.准 ...
- tomcat与springmvc 结合 之---第20篇 springmvc 对于加载的bean对象存储在哪里
是
- GitHub秘钥(SSH Key)
一.公钥的作用 公钥一般给服务器,别人权限中加入我给的公钥,当我们从远地仓库中下载项目(git clone xxx)的时 那个服务器通过他的绑定的公钥来匹配我的私钥,如果匹配,则就可以正常下载,如果不 ...
- Jquery遍历复选框选中项
var ret=''; $('name=chkIds').each(function(){ if($(this).is(':checked')){ ret+=$(this).val()+','; } ...