剑指 Offer 13. 机器人的运动范围

地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?

示例 1:

输入:m = 2, n = 3, k = 1
输出:3

示例 2:

输入:m = 3, n = 1, k = 0
输出:1

提示:

  • 1 <= n,m <= 100
  • 0 <= k <= 20

一、深度优先遍历DFS

根据K神思路写的代码:

class Solution {

    public int movingCount(int m, int n, int k) {
boolean[][] visited = new boolean[m][n];
return dfs(visited, m, n, k, 0, 0);
} private int dfs(boolean[][] visited, int m, int n, int k, int i, int j) {
if(i >= m || j >= n || visited[i][j] || bitSum(i) + bitSum(j) > k) return 0;
visited[i][j] = true;
return 1 + dfs(visited, m, n, k, i + 1, j) + dfs(visited, m, n, k, i, j + 1) ;
} private int bitSum(int n) {
int sum = 0;
while(n > 0) {
sum += n % 10;
n /= 10;
}
return sum;
}
}

注释版本:

class Solution {
// 棋盘的行列
int m, n;
// 记录位置是否被遍历过
boolean[][] visited; public int movingCount(int m, int n, int k) {
this.m = m;
this.n = n;
visited = new boolean[m][n];
return dfs(0, 0, k);
} private int dfs(int i, int j, int k) {
// i >= m || j >= n是边界条件的判断
if (i >= m || j >= n
// visited[i][j]判断这个格子是否被访问过
|| visited[i][j] == true
// k < sum(i, j)判断当前格子坐标是否满足条件
|| sum(i, j) > k) {
return 0;
}
// 标注这个格子被访问过
visited[i][j] = true;
// 沿着当前格子的右边和下边继续访问
return 1 + dfs(i + 1, j, k)
+ dfs(i, j + 1, k);
} // 计算两个坐标数字的和
private int sum(int i, int j) {
int sum = 0;
while (i != 0) {
sum += i % 10;
i /= 10;
}
while (j != 0) {
sum += j % 10;
j /= 10;
}
return sum;
}
}

k神简洁的代码:

class Solution {
int m, n, k;
boolean[][] visited;
public int movingCount(int m, int n, int k) {
this.m = m; this.n = n; this.k = k;
this.visited = new boolean[m][n];
return dfs(0, 0, 0, 0);
}
public int dfs(int i, int j, int si, int sj) {
if(i >= m || j >= n || k < si + sj || visited[i][j]) return 0;
visited[i][j] = true;
return 1 + dfs(i + 1, j, (i + 1) % 10 != 0 ? si + 1 : si - 8, sj) + dfs(i, j + 1, si, (j + 1) % 10 != 0 ? sj + 1 : sj - 8);
}
}

二、广度优先遍历 BFS

  • BFS/DFS : 两者目标都是遍历整个矩阵,不同点在于搜索顺序不同。DFS 是朝一个方向走到底,再回退,以此类推;BFS 则是按照“平推”的方式向前搜索。
  • BFS 实现: 通常利用队列实现广度优先遍历。

这个代码:有点繁冗,但可以让小白看懂代码是如何运行的。

class Solution {
public int movingCount(int m, int n, int k) {
//状态:dp[i][j]代表第i,j个格子能否走到
boolean[][] dp = new boolean[m][n];
dp[0][0] = isValid(0, 0, k);
//转移方程
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if(i == 0 && j == 0) continue;
else if(i == 0) dp[i][j] = isValid(i, j, k) && dp[i][j - 1];
else if(j == 0) dp[i][j] = isValid(i, j, k) && dp[i - 1][j];
else dp[i][j] = isValid(i, j, k) && (dp[i - 1][j] || dp[i][j - 1]);
}
}
int count = 0;
for (boolean[] row : dp) {
for (boolean ele : row) {
if (ele) {
count++;
}
}
}
return count;
}
public boolean isValid(int i, int j, int k) {
int sum = 0;
while (i != 0) {
sum += i % 10;
i /= 10;
}
while (j != 0) {
sum += j % 10;
j /= 10;
}
return sum <= k;
}
}

这个代码是为了求sum又简化了代码,但跟k神比起确实还差一点。

public int movingCount(int m, int n, int k) {
boolean[][] nums = new boolean[m][n];
nums[0][0] = isValid(0, 0, k);
int sum = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == 0 && j == 0) {
continue;
} else if (i == 0) {
nums[i][j] = nums[i][j - 1] && isValid(i, j, k);
} else if (j==0) {
nums[i][j] = nums[i - 1][j] && isValid(i, j, k);
} else {
nums[i][j] = (nums[i - 1][j] || nums[i][j - 1]) && isValid(i, j, k);
}
if (nums[i][j]) sum++;
}
}
return sum;
}
public boolean isValid(int m, int n, int k) {
int sum = 0;
while (m != 0 || n != 0) {
if (m != 0) {
sum += m % 10;
m /= 10;
}
if (n != 0) {
sum += n % 10;
n /= 10;
}
}
return sum <= k;
}
}

k神更简洁的代码:

class Solution {
public int movingCount(int m, int n, int k) {
boolean[][] visited = new boolean[m][n];
int res = 0;
Queue<int[]> queue= new LinkedList<int[]>();
queue.add(new int[] { 0, 0, 0, 0 });
while(queue.size() > 0) {
int[] x = queue.poll();
int i = x[0], j = x[1], si = x[2], sj = x[3];
if(i >= m || j >= n || k < si + sj || visited[i][j]) continue;
visited[i][j] = true;
res ++;
queue.add(new int[] { i + 1, j, (i + 1) % 10 != 0 ? si + 1 : si - 8, sj });
queue.add(new int[] { i, j + 1, si, (j + 1) % 10 != 0 ? sj + 1 : sj - 8 });
}
return res;
}
}

参考链接:https://leetcode-cn.com/problems/ji-qi-ren-de-yun-dong-fan-wei-lcof/solution/mian-shi-ti-13-ji-qi-ren-de-yun-dong-fan-wei-dfs-b/

剑指 Offer 13. 机器人的运动范围的更多相关文章

  1. 剑指 Offer 13. 机器人的运动范围 + 深搜 + 递归

    剑指 Offer 13. 机器人的运动范围 题目链接 package com.walegarrett.offer; /** * @Author WaleGarrett * @Date 2020/12/ ...

  2. 【Java】 剑指offer(12) 机器人的运动范围

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 地上有一个m行n列的方格.一个机器人从坐标(0, 0)的格子开始移 ...

  3. Go语言实现:【剑指offer】机器人的运动范围

    该题目来源于牛客网<剑指offer>专题. 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之 ...

  4. 剑指Offer 66. 机器人的运动范围 (回溯)

    题目描述 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. 例如,当k为18时,机器人能 ...

  5. [剑指Offer] 66.机器人的运动范围

    题目描述 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. 例如,当k为18时,机器人能 ...

  6. 剑指offer:机器人的运动范围(回溯法DFS)

    题目描述 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. 例如,当k为18时,机器人能 ...

  7. 剑指offer——14机器人的运动范围

    题目描述 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. 例如,当k为18时,机器人能 ...

  8. 剑指offer(13)-栈的压入、弹出序列 九度1366

    题目来自剑指offer系列 九度 1366:http://ac.jobdu.com/problem.php?pid=1367 题目描述: 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列 ...

  9. 【Java】 剑指offer(13) 剪绳子

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n> ...

随机推荐

  1. 第一个用户进程 - Android 的 Init 进程

    本文尝试对着 <深入理解 Android 5.0 系统>来对 android 9.0 的启动代码进行分析,但是分析过程中发现自己缺乏操作系统方面的知识,以致于只能做一些简单分析.最近也买了 ...

  2. 题解 guP3956 棋盘

    好吧本来这题可以用最短路跑完的,结果我硬是打了1.5小时的dfs... 其实这题并没有那么难,构造一个无向图再跑最短路即可. 我用的dj跑最短路 问题来了 如果(n,n)是无色的,那么图上就没有这个点 ...

  3. Jenkins 进阶篇 - 权限案例实践

    为了演示方便,我这里创建了如下的一些任务,各个任务由包含在对应的目录中树形结构大概如下: jenkins-authority 目录类型任务 ├── dev-project-group 目录类型任务 │ ...

  4. apt-key Debian packages密钥管理命令

    adv子命令 Pass advanced options to gpg. With adv --recv-key you can e.g. download key from keyservers  ...

  5. 编写mysql多实例启动脚本

    脚本原理: 启动MySQL动作: mysqld_safe来执行启动 停止MySQL动作: 使用mysqladmin来执行停止动作 重启的MySQL动作:    原理就是先停止,然后再启动 但是要注意: ...

  6. [考试总结]noip模拟17

    爆零了! 菜爆了 弱展了 垃爆了 没有什么可以掩饰你的菜了 这次考试为我带来了第一个 \(\color{red}{ \huge{0}}\) 分,十分欣慰.... 最近的暴力都打不对,你还想什么正解?? ...

  7. C++第四十三篇 -- VS2017创建控制台程序勾选MFC类库

    用VS2017创建EXE带MFC类库方法 1. File --> New --> Project 2. Windows桌面向导 3. 勾选MFC类库 4. 创建成功 如果项目编译出错 1. ...

  8. 第十一篇 -- QMainWindow与QAction(斜体-粗体-下划线)

    效果图: ui_mainWindow.py # -*- coding: utf-8 -*- # Form implementation generated from reading ui file ' ...

  9. vscode配置及插件

    编辑vue时候的用户配置 { "workbench.colorTheme": "Solarized Dark", // 主题 "editor.dete ...

  10. videojs文档翻译-api

    直播流地址 rtmp://live.hkstv.hk.lxdns.com/live/hks API 接口 (一)   Modules  模块 1)         browser :浏览器 2)    ...