Codeforces 题目传送门 & 洛谷题目传送门

首先考虑 \(d(u,v)\) 是个什么东西,分情况讨论:

  • \(u\not\perp v\),\(d(u,v)=1\)
  • \(u\perp v\),记 \(p_u\) 为 \(u\) 的最小质因子,\(p_v\) 为 \(v\) 的最小质因子,那么继续分情况讨论:
    • \(p_up_v\le n\),\(d(u,v)=2\)(\(u\to p_up_v\to v\))
    • \(p_up_v>n\) 且 \(\max(p_u,p_v)\le\dfrac{n}{2}\),\(d(u,v)=3\)(\(u\to 2p_u\to 2p_v\to v\))
    • \(p_up_v>n\) 且 \(\max(p_u,p_v)>\dfrac{n}{2}\),\(d(u,v)=0\)

考虑对这四种情况分别计算,对于 \(d(u,v)=1\) 显然预处理出欧拉函数即可处理,即 \(\dbinom{n-1}{2}-\sum\limits_{i=1}^n(\varphi(i)-1)\)(由于 \(1\) 不能与任何点连边,因此 \(d(u,v)\ne 0\) 的点只可能在另外 \(n-1\) 个点之间),对于 \(d(u,v)=2\) 的情况直接处理比较困难,因此考虑正难则反,拿总方案数减去另外三种情况的方案数即可计算,对于第三种情况,由于 \(p_up_v>0\),因此在 \([1,n]\) 中不存在某个数既是 \(p_u\) 也是 \(p_v\) 的倍数,因此对于某个固定的 \(p_u,p_v\),合法的 \(u,v\) 的对数即是 \([1,n]\) 中 \(p_x=p_u\) 的 \(x\) 的个数与 \([1,n]\) 中 \(p_x=p_v\) 的 \(x\) 的个数之积。我们不妨假设 \(p_u<p_v\),我们记 \(cnt_x\) 表示 \([1,n]\) 中有多少个数最小质因子为 \(x\),那么考虑枚举 \(p_u\),合法的 \(p_v\) 必然在区间 \((\max(p_u,\dfrac{n}{p_u}),\dfrac{n}{2}]\) 之间,前缀和优化一下即可。对于第四种情况也同理,枚举 \(p_u\),合法的 \(p_v\) 在区间 \((\max(i,\dfrac{n}{2}),n]\) 之间。第二种情况减一下即可,复杂度线性。

最后讲一下我翻车的现场,我是考虑求出分别求出 \(d(u,v)=1/2/3\) 的情况并将它们的贡献加起来,\(d(u,v)=1,3\) 的情况自然是很容易求得的,但是 \(d(u,v)=2\) 的情况不好计算,然后我就一直在分析如何计算这种情况的方案数,xtbz……看来以后对于计算方案数的问题,如果正面计算比较困难要学会正难则反,学到了学到了(

const int MAXN=1e7;
int n,pr[MAXN/10+5],prcnt=0,mnp[MAXN+5],phi[MAXN+5],cnt[MAXN+5];
bitset<MAXN+5> vis;
void sieve(){
phi[1]=1;
for(int i=2;i<=n;i++){
if(!vis.test(i)){pr[++prcnt]=i;phi[i]=i-1;mnp[i]=i;}
for(int j=1;pr[j]*i<=n&&j<=prcnt;j++){
vis[pr[j]*i]=1;mnp[pr[j]*i]=pr[j];
if(i%pr[j]==0){phi[pr[j]*i]=phi[i]*pr[j];break;}
else phi[pr[j]*i]=phi[i]*phi[pr[j]];
}
}
}
int calc(int l,int r){return (l>r)?0:(cnt[r]-cnt[l]);}
int main(){
scanf("%d",&n);sieve();ll sum=0,ans0=0,ans1=0,ans2=0,ans3=0;
for(int i=2;i<=n;i++) cnt[mnp[i]]++;
for(int i=1;i<=n;i++) cnt[i]+=cnt[i-1];
for(int i=1;i<=n;i++) sum+=phi[i]-1;
ans1=1ll*(n-1)*(n-2)/2-sum;
for(int i=1;i<=n;i++){
int num=cnt[i]-cnt[i-1];
if(i<=n/2) ans3+=1ll*num*calc(max(i,n/i),n/2);
ans0+=1ll*num*calc(max(n/2,i),n);
} ans2=sum-ans0-ans3;
printf("%lld\n",ans1+(ans2<<1)+(ans3<<1)+ans3);
return 0;
}

Codeforces 870F - Path(数论+分类讨论+正难则反)的更多相关文章

  1. FZU 2122 又见LKity【字符串/正难则反/KMP/把一个字符串中某个部分替换为另一个部分】

    嗨!大家好,在TempleRun中大家都认识我了吧.我是又笨又穷的猫猫LKity.很高兴这次又与各位FZU的ACMer见面了.最近见到FZU的各位ACMer都在刻苦地集训,整天在日光浴中闲得发慌的我压 ...

  2. P1197 [JSOI2008]星球大战(并查集判断连通块+正难则反)

    P1197 [JSOI2008]星球大战(并查集判断连通块+正难则反) 并查集本来就是连一对不同父亲的节点就的话连通块就少一个. 题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统 ...

  3. Educational Codeforces Round 74 (Rated for Div. 2)【A,B,C【贪心】,D【正难则反的思想】】

    A. Prime Subtractiontime limit per test2 secondsmemory limit per test256 megabytesinputstandard inpu ...

  4. Codeforces.520B.Two Buttons(正难则反)

    题目链接 \(Description\) 给定两个数\(n,m\),每次可以使\(n\)减一或使\(n\)乘2.求最少需要多少次可以使\(n\)等于\(m\). \(Solution\) 暴力连边BF ...

  5. CodeForces 788B - Weird journey [ 分类讨论 ] [ 欧拉通路 ]

    题意: 给出无向图. good way : 仅有两条边只经过一次,余下边全经过两次的路 问你共有多少条不同的good way. 两条good way不同仅当它们所经过的边的集合中至少有一条不同 (很关 ...

  6. Codeforces Round #189 (Div. 2) A. Magic Numbers【正难则反/给出一个数字串判断是否只由1,14和144组成】

    A. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  7. CF 1005B Delete from the Left 【模拟数组操作/正难则反】

    You are given two strings s and t. In a single move, you can choose any of two strings and delete th ...

  8. 树上统计treecnt(dsu on tree 并查集 正难则反)

    题目链接 dalao们怎么都写的线段树合并啊.. dsu跑的好慢. \(Description\) 给定一棵\(n(n\leq 10^5)\)个点的树. 定义\(Tree[L,R]\)表示为了使得\( ...

  9. 洛谷 P1049 装箱问题【正难则反/01背包】

    题目描述 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30,每个物品有一个体积(正整数). 要求n个物品中,任取若干个装入箱内,使箱子的剩余 ...

随机推荐

  1. Java-基础-ArrayList

    1. 简介 ArrayList 实现了 List 接口,其底层基于数组实现容量大小动态可变.既然是数组,那么元素存放一定是有序的,并允许包括 null 在内的所有元素. 每个 ArrayList 实例 ...

  2. Python课程笔记(一)

    由于新冠状病毒的爆发,不得不在家里上网课,开课已经两个礼拜了,今天上完Python课后,准备整理一下最近学习Python的笔记. 人生苦短,我用Python 一.Hello World 初学一门新的语 ...

  3. IdentityServer4 负载均衡配置

    在不用到负载之前,一切都很好,但是部署多个实例之后,问题挺多的:session问题.令牌签发后的校验问题. 在此之前,先自查官方文档:Deployment - IdentityServer4 1.0. ...

  4. 构建乘积数组 牛客网 剑指Offer

    构建成绩数组 牛客网 剑指Offer 题目描述 给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0]A[1]...*A[i-1]A[i ...

  5. hdu 2147 kiki's game(DP(SG)打表找规律)

    题意: n*m的棋盘,一枚硬币右上角,每人每次可将硬币移向三个方向之一(一格单位):左边,下边,左下边. 无法移动硬币的人负. 给出n和m,问,先手胜还是后手胜. 数据范围: n, m (0<n ...

  6. DeWeb进阶 :控件开发 --- 1 完成一个纯html的demo

    最近随着DeWeb(以下简称DW)的完善,和群友的应用的深入,已经有网友开始尝试做DeWeb支持控件的开发了! 这太令人兴奋了! 作为DeWeb的开发者,感觉DeWeb的优势之一就是简洁的第三方控件扩 ...

  7. testNG 注解使用说明

    1.TestNG常用注解 @BeforeSuite 标记的方法:在某个测试套件(suite)开始之前运行 @BeforeTest 在某个测试(test)开始之前运行 @BeforeClass 在某个测 ...

  8. C++ 类中 关于常量定义 理解总结

    前言 有时我们希望某些常量只在类中有效.由于#define定义的宏常量是 全局 的,不能达到目的,于是想当然地觉得应该用 const修饰 数据成员来实现.const数据成员的确是存在的,但其含义却不是 ...

  9. LeetCode 113. 路径总和 II C++

    提交结果:内存超100%,用时超69% /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNo ...

  10. nose在python2与python3中的包的自动发现用例的区别

    最近在使用python3,同样装了nose,发现自动发现用例总是有问题,如下面的代码结婚 testcase |------ __init__.py |------ test_bb.py test_bb ...