速度是没有极限的。

众说周知,Dijikstra是一种最短路算法,复杂度为O(V^2+E)

朴素Dijikstra

void Dijikstra(int s){
memset(dis,inf,sizeof(dis));
dis[s]=0;
for(int i=1;i<=n;++i){
int maxs=inf,u=0;
for(int j=1;j<=n;++j)
if(!vis[j]&&dis[j]<maxs)
maxs=dis[j],u=j;
vis[u]=1;
for(int e=pre[u];e;e=nx[e]){
const int v=to[e];
if(dis[v]>dis[u]+w[e])
dis[v]=dis[u]+w[e];
}
}
}

其实对于稠密图它还是很棒了。 但我们不满足于此。

常见优化-heap优化

这里我们采用STL_priority_queue进行优化

typedef pair<int,int> p;
priority_queue<p,vector<p>,greater<p> > q;
void Dijikstra(int s){
memset(dis,inf,sizeof(dis));
dis[s]=0;
q.push(p(0,s));
while(!q.empty()){
const int u=q.top().second;
q.pop();
if(!vis[u]){
vis[u]=1;
for(int e=pre[u];e;e=nx[e]){
const int v=to[e];
if(!vis[v]&&dis[v]>dis[u]+w[e])
dis[v]=dis[u]+w[e],
q.push(p(dis[v],v));
}
}
}
}

这样的话复杂度就到了O((V+E)logV) 但是,常数大。 手写堆比较复杂,不现实。

奇怪的优化-线段树优化

这并不是自己发现的,但是网上资料少就记录一下吧。 我们回头看看朴素的Dijikstra以及priority_queue优化。 发现优化的主要思路就是减少了查询当前dis最小点的复杂度。 那么也很容易想到用线段树来维护dis的最小值吧。 这样问题就变成了 整体最小值与单点修改,很简单的线段树操作吧。

int tree[N<<2],leaf;
/*线段树存的是点的标号*/
int check(int i,int j){
return dis[i]<dis[j]?i:j;
}
void build(){
memset(dis,inf,sizeof(dis));
for(leaf=1;leaf<=n;leaf<<=1);--leaf;
for(int i=1;i<=n;++i) tree[leaf+i]=i;
}
/*修改 dis[x] 为 y*/
void change(int x,int y){
dis[x]=y,x+=leaf,x>>=1;
while(x) tree[x]=check(tree[x<<1],tree[x<<1|1]),x>>=1;
}
void Dijikstra(int s){
build();
dis[s]=0;
int u=s;
for(int i=1;i<=n;++i){
ans[u]=dis[u];
change(u,max_int); /*删除u*/
for(int e=pre[u];e;e=nx[e]){
const int v=to[e];
if(dis[v]>ans[u]+w[e])
change(v,ans[u]+w[e]);
}
u=tree[1];
}
}

这个比堆短吧。 而且非递归的线段树常数也很小呢。

测试&总结

以luogu的单源最短路模板题(稀疏图,无O2)作为测试。

  • 朴素的Dijikstra 2000+ms
  • Dijikstra+priority_queue 652ms
  • Dijikstra+线段树 192ms 然后加11了SLF和LLL的SPFA也很快,大概300ms

所以SPFA和Dijikstra+priority_queue是很实用的,但如果想卡排名的话可以试一试线段树啊

—来自xb神犇

【图论】用线段树写Dijikstra!!的更多相关文章

  1. codeforces 876 D. Sorting the Coins(线段树(不用线段树写也行线段树写比较装逼))

    题目链接:http://codeforces.com/contest/876/problem/D 题解:一道简单的类似模拟的题目.其实就是看右边连出来有多少连续不需要换的假设位置为pos只要找pos- ...

  2. 2018.11.01 NOIP训练 图论(线段树+倍增+dfs序)

    传送门 一道挺妙的题. 对于询问点(u,v),如右图所示,我们可以发现存在一个点m在u->v的路径中,m子树的点到u是最近的,m子树外到v是最近的.其中dis(u,m)=(dis(u,v)-1) ...

  3. 用线段树写Dijkstar

    如题 noip前就想用线段树优化Dijkstar 写那啥,感觉挺好玩的 写了个线段树优化的Dijkstar #include<cstdio> #include<cstring> ...

  4. 【BZOJ-4653】区间 线段树 + 排序 + 离散化

    4653: [Noi2016]区间 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 107  Solved: 70[Submit][Status][Di ...

  5. Mango DS Traning #49 ---线段树3 解题手记

    Training address: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=38994#overview B.Xenia and B ...

  6. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  7. LightOJ 1085(树状数组+离散化+DP,线段树)

    All Possible Increasing Subsequences Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format: ...

  8. Vijos P1103 校门外的树【线段树,模拟】

    校门外的树 描述 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0,1,2,……, ...

  9. BZOJ_3685_普通van Emde Boas树_权值线段树

    BZOJ_3685_普通van Emde Boas树_权值线段树 Description 设计数据结构支持: 1 x  若x不存在,插入x 2 x  若x存在,删除x 3    输出当前最小值,若不存 ...

随机推荐

  1. 利用cm压缩包手动安装cm和cdh

    安装准备: 1.操作系统为centos6.9 CentOS-6.9-x86_64-bin-DVD1to2 2.安装Oracle JDK (1.8u121) 下载jdk-8u121-linux-x64. ...

  2. 【.NET 与树莓派】六轴飞控传感器(MPU 6050)

    所谓"飞控",其实是重力加速度计和陀螺仪的组合,因为多用于控制飞行器的平衡(无人机.遥控飞机).有同学会问,这货为什么会有六轴呢?咱们常见的不是X.Y.Z三轴吗?重力加速度有三轴, ...

  3. 面向对象编程OOP

    这节讲一下,什么是面向对象(Object Oriented Programming).说面向对象之前,我们不得不提的是面向过程(Process Oriented Programming),C语言就是面 ...

  4. Codeforces Round #691 (Div. 2)

    A. Red-Blue Shuffle 题意:有两个长度为n的数组,数组a和数组b,问那个数组中的数字相比之下比另一个数组中相应位置的元素值更大一些,如果数组a大就输出RED,如果数组b大就输出BLU ...

  5. [Python] RPC实现

    单线程同步 使用socket传输数据 使用json序列化消息体 struct将消息编码为二进制字节串,进行网络传输 消息协议 1 // 输入 2 { 3 in: "ping", 4 ...

  6. linux最大文件打开数和swap限制

    linux最大文件打开数和swap限制   逑熙 关注 2017.07.24 15:39* 字数 388 阅读 314评论 0喜欢 0 linux 2.6+的核心会使用硬盘的一部分做为SWAP分区,用 ...

  7. vim使用基础

    vi/vim编辑器使用 前言 There is an old joke about a visitor to New York City asking a passerby for direction ...

  8. python 如何让俩个对象相等及如何让俩个对象具有相同的id值

  9. docker-ce 安装

    配置源 确认版本 添加镜像加速器 https://docs.docker.com/engine/release-notes/19.03/ for centos wget -O /etc/yum.rep ...

  10. Jaxb的优点与用法(bean转xml的插件,简化webservice接口的开发工作量)

    一.jaxb是什么 JAXB是Java Architecture for XML Binding的缩写.可以将一个Java对象转变成为XML格式,反之亦然.     我们把对象与关系数据库之间的映射称 ...