bzoj2038 小z的袜子 (莫队)
题目大意
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。
首先,我们考虑,对于答案的计算,我们肯定要同时维护分子和分母
然后,我们对ans就是直接维护各个颜色袜子的个数的平方和就可以
直接上代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ll long long
using namespace std;
const int maxn = 1e5;
int n,m,pos[maxn],c[maxn];
ll ans,s[maxn];
struct Node{
int l,r,id;
ll a,b;
};
Node a[maxn];
ll gcd(ll a,ll b){if (!b) return a;else gcd(b,a%b);}
ll power(ll x){return x*x;}
bool cmp1(Node a,Node b)
{
if (pos[a.l]==pos[b.l]) return a.r<b.r;
return a.l<b.l;
}
bool cmp2(Node a,Node b)
{
return a.id<b.id;
}
void update(int p,int add)
{
ans-=power(s[c[p]]);
s[c[p]]+=add;
ans+=power(s[c[p]]);
}
void solve()
{
int l=1,r=0;
for (int i=1;i<=m;i++)
{
while (r<a[i].r)
{
update(r+1,1);
r++;
}
while (r>a[i].r)
{
update(r,-1);
r--;
}
while (l<a[i].l)
{
update(l,-1);
l++;
}
while (l>a[i].l)
{
update(l-1,1);
l--;
}
if (a[i].l==a[i].r)
{
a[i].a=0;
a[i].b=1;
continue;
}
a[i].a=ans-(a[i].r-a[i].l+1);
a[i].b=(ll)(a[i].r-a[i].l+1)*(a[i].r-a[i].l);
ll k=gcd(a[i].a,a[i].b);
a[i].a/=k;a[i].b/=k;
}
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
{
scanf("%d",&c[i]);
}
int block=int(sqrt(n));
for (int i=1;i<=n;i++)
{
pos[i]=(i-1)/block+1;
}
for (int i=1;i<=m;i++)
{
scanf("%d%d",&a[i].l,&a[i].r);
a[i].id=i;
}
sort(a+1,a+1+m,cmp1);
solve();
sort(a+1,a+1+m,cmp2);
for (int i=1;i<=m;i++)
{
printf("%lld/%lld\n",a[i].a,a[i].b);
}
return 0;
}
bzoj2038 小z的袜子 (莫队)的更多相关文章
- BZOJ2038 小Z的袜子 莫队
BZOJ2038 题意:q(5000)次询问,问在区间中随意取两个值,这两个值恰好相同的概率是多少?分数表示: 感觉自己复述的题意极度抽象,还是原题意有趣(逃: 思路:设在L到R这个区间中,x这个值得 ...
- [国家集训队][bzoj2038] 小Z的袜子 [莫队]
题面: 传送门 思路: 又是一道标准的莫队处理题目,但是这道题需要一点小改动:求个数变成了求概率 我们思考:每次某种颜色从i个增加到i+1个,符合要求的情况多了多少? 原来的总情况数是i*(i-1)/ ...
- 【填坑向】bzoj2038小Z的袜子 莫队
学莫队必做题,,,但是懒得写.今天来填个坑 莫队水题 莫队实际上就是按一个玄学顺序来离线计算询问,保证复杂度只会多一个n1/2,感觉是玄学(离线算法都很玄学) 易错点:要开long long(卡我半天 ...
- BZOJ2038 小Z的袜子(莫队之源)
题意+思路: 给你m个区间询问,问每个区间内的$\displaystyle \frac{\sum x^2-(R-L+1)}{(R-L)(R-L+1)} $,其中x为每种数字的个数,用cnt存储: 所以 ...
- 小Z的袜子 & 莫队
莫队学习 & 小Z的袜子 引入 莫队 由莫涛巨佬提出,是一种离线算法 运用广泛 可以解决广大的离线区间询问题 莫队的历史 早在mt巨佬提出莫队之前 类似莫队的算法和莫队的思想已在Codefor ...
- BZOJ 2038 [2009国家集训队]小Z的袜子 莫队
2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...
- 【国家集训队2010】小Z的袜子[莫队算法]
[莫队算法][国家集训队2010]小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程, ...
- bzoj 2308 小Z的袜子(莫队算法)
小Z的袜子 [题目链接]小Z的袜子 [题目类型]莫队算法 &题解: 莫队算法第一题吧,建议先看这个理解算法,之后在参考这个就可以写出简洁的代码 我的比第2个少了一次sort,他的跑了1600m ...
- P1494 [国家集训队]小Z的袜子/莫队学习笔记(误
P1494 [国家集训队]小Z的袜子 题目描述 作为一个生活散漫的人,小\(Z\)每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小\(Z\)再也无法忍受这恼人的找袜子过程,于是他 ...
- BZOJ2038 [2009国家集训队]小Z的袜子 莫队+分块
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z把这N只袜子从1到N编号,然后从 ...
随机推荐
- 高性能利器:CDN我建议你好好学一下!
硬核干货分享,欢迎关注[Java补习课]成长的路上,我们一起前行 ! <高可用系列文章> 已收录在专栏,欢迎关注! CDN 概述 CDN 全称 Content Delivery Netwo ...
- Notepad++插件推荐和下载
Notepad++因为其强劲的插件支持,越来越受到编程爱好者的喜欢.很多优秀的插件现在已经默认安装了,下面是100多款受欢迎的Notepad++插件的介绍和下载地址. XML Tools 这个插件是包 ...
- shell 字符串判空
2021-09-01 1. 字符串判空主要用到两个参数 -z 判断字符串为空否 -n 判断字符串不为空 2. 实例 #!/bin/bash PID=`date` if [ -z "$PID& ...
- Linux centos7 find 命令
2021-08-13 1. 命令简介 find 命令用来在指定目录下查找文件.任何位于参数之前的字符串都将被视为欲查找的目录名.如果使用该命令时,不设置任何参数,则 find 命令将在当前目录下查找子 ...
- AtomicStampedReference AtomicReference解决CAS机制中ABA问题
AtomicStampedReference AtomicReference解决CAS机制中ABA问题 AtomicStampedReference AtomicStampedReference它内部 ...
- 【Azure 应用服务】Python flask 应用部署在Aure App Service中作为一个子项目时,解决遇见的404 Not Found问题
问题描述 在成功的部署Python flask应用到App Service (Windows)后,如果需要把当前项目(如:hiflask)作为一个子项目(子站点),把web.config文件从wwwr ...
- 远程线程注入DLL
远程线程注入 0x00 前言 远程线程注入是一种经典的DLL注入技术.其实就是指一个新进程中另一个进程中创建线程的技术. 0x01 介绍 1.远程线程注入原理 画了一个图大致理解了下远程线程注入dll ...
- 九、Abp vNext 基础篇丨评论聚合功能
介绍 评论本来是要放到标签里面去讲的,但是因为上一章东西有点多了,我就没放进去,这一章单独拿出来,内容不多大家自己写写就可以,也算是对前面讲解的一个小练习吧. 相关注释我也加在代码上面了,大家看看代码 ...
- C++ windows 函数讲解(一)获得屏幕分辨率
先上代码: #include<bits/stdc++.h> #include<windows.h> using namespace std; int main() { int ...
- 最新版微软视窗(Windows)作业系统下载(2020-08-19)
为了更好的使用WSL(Windows Subsystem For Linux),不得不用最新的windows 10 2004版了,这个版本的WSL已经是第二版了,即WSL2.下面给出下载地址 系统发布 ...