Keras学习:第一个例子-训练MNIST数据集
import numpy as npimport gzip
import struct
import keras as ks
import logging
from keras.layers import Dense, Activation, Flatten, Convolution2D
from keras.utils import np_utils def read_data(label_url,image_url):
with gzip.open(label_url) as flbl:
magic, num = struct.unpack(">II",flbl.read(8))
label = np.fromstring(flbl.read(),dtype=np.int8)
with gzip.open(image_url,'rb') as fimg:
magic, num, rows, cols = struct.unpack(">IIII",fimg.read(16))
image = np.fromstring(fimg.read(),dtype=np.uint8).reshape(len(label),rows,cols)
return (label, image) (train_lbl, train_img) = read_data('mnist/train-labels-idx1-ubyte.gz','mnist/train-images-idx3-ubyte.gz')
(val_lbl, val_img) = read_data('mnist/t10k-labels-idx1-ubyte.gz','mnist/t10k-images-idx3-ubyte.gz') def to4d(img):
return img.reshape(img.shape[0],784).astype(np.float32)/255 train_img = to4d(train_img)
val_img = to4d(val_img)
#important
train_LBL = np_utils.to_categorical(train_lbl,nb_classes=10)
val_LBL = np_utils.to_categorical(val_lbl,nb_classes=10) model = ks.models.Sequential()
model.add(Dense(128,input_dim=784))
model.add(Activation('relu'))
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dense(10))
model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy'])
model.fit(x=train_img,y=train_LBL,batch_size=100,nb_epoch=10,verbose=1,validation_data=(val_img,val_LBL))
源码如上↑
mnist的数据集下载好后保存在mnist的文件夹里,main.py里复制粘贴上面的源码应该就能跑了,main.py要放在mnist文件夹的外边,最重要的就是#important下面的两行,keras似乎必须要对标签分类之后才能使用标签。
Keras学习:第一个例子-训练MNIST数据集的更多相关文章
- MXNet学习-第一个例子:训练MNIST数据集
一个门外汉写的MXNET跑MNIST的例子,三层全连接层最后验证率是97%左右,毕竟是第一个例子,主要就是用来理解MXNet怎么使用. #导入需要的模块 import numpy as np #num ...
- 使用caffe训练mnist数据集 - caffe教程实战(一)
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...
- 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...
- TensorFlow 训练MNIST数据集(2)—— 多层神经网络
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码 ...
- 基于Keras 的VGG16神经网络模型的Mnist数据集识别并使用GPU加速
这段话放在前面:之前一种用的Pytorch,用着还挺爽,感觉挺方便的,但是在最近文献的时候,很多实验都是基于Google 的Keras的,所以抽空学了下Keras,学了之后才发现Keras相比Pyto ...
- 搭建简单模型训练MNIST数据集
# -*- coding = utf-8 -*- # @Time : 2021/3/16 # @Author : pistachio # @File : test1.py # @Software : ...
- 深度学习(一)之MNIST数据集分类
任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 py ...
- 【Mxnet】----1、使用mxnet训练mnist数据集
使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list
- TensorFlow训练MNIST数据集(1) —— softmax 单层神经网络
1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import inp ...
随机推荐
- PPT制作手机手指滑动效果
原文链接:https://www.toutiao.com/i6495304998786695694/ 上一节我们完成了手机滑动粗糙效果,这部分我们将给动画添加一个手指的图片. 首先,选择"插 ...
- 如何查看mysql的用户权限
查询语句:select * from mysql.user where user='root'\G;user是用户名 <privileges>是一个用逗号分隔的你想要赋予的MySQL用户权 ...
- 微软的Serialize和Newtonsoft的SerializeObject比较
微软的序列化反序列化组件出来已有好几年了,刚出来的时候各种吐槽.最近在优化代码,比较了一下微软的Serialize和Newtonsoft的SerializeObject,感觉大部分场景下可以用微软的序 ...
- ELF文件格式学习总结
ELF文件格式学习总结 ELF文件格式学习总结1. 概述2. 目标文件结构3. ELF文件头3.1 魔数3.2 文件类型3.3 机器类型4. ELF文件内容4.1段表4.2字符串表(.**strtab ...
- Kotlin 协程一 —— 全面了解 Kotlin 协程
一.协程的一些前置知识 1.1 进程和线程 1.1.1基本定义 1.1.2为什么要有线程 1.1.3 进程与线程的区别 1.2 协作式与抢占式 1.2.1 协作式 1.2.2 抢占式 1.3 协程 二 ...
- ubuntu18.04下取消中键复制粘贴功能
Q: armlinux开发,主机采用ubuntu18.04操作系统,使用过程中关于鼠标中键有如下操作现象, 操作: 1.选中文本, 2.将鼠标光标定位到要插入的位置 3.按下鼠标中键 现象:将自动复制 ...
- vue.config.js报错cannot set property "preserveWhitespace" of undefined
vue.config.js报错cannot set property "preserveWhitespace" of undefined 最近在项目中配置webpack,由于vue ...
- Sentry 开发者贡献指南 - 数据库迁移
Django 迁移是我们处理 Sentry 中数据库更改的方式. Django 迁移官方文档:https://docs.djangoproject.com/en/2.2/topics/migratio ...
- deepin20体验
现在Ubuntu20吊打deepin20 100条街.撑了20天受不了deepin 优点 开机启动设置简单,即使不是应用商店的应用也很好 deepin仓库不用代理也很快.,而且有些Ubuntu下载不了 ...
- 从数组中找出第K大的数
利用改进的快排方法 public class QuickFindMaxKValue { public static void main(String[] args) { int[] a = {8, 3 ...