scrapy爬取知乎问答
登陆
参考 https://github.com/zkqiang/Zhihu-Login
# -*- coding: utf-8 -*-
import scrapy
import time
import re
import base64
import hmac
import hashlib
import json
import matplotlib.pyplot as plt
from PIL import Image
class ZhihuSpider(scrapy.Spider):
name = 'zhihu'
allowed_domains = ['www.zhihu.com']
start_urls = ['http://www.zhihu.com/']
login_url = 'https://www.zhihu.com/signup'
login_api = 'https://www.zhihu.com/api/v3/oauth/sign_in'
login_data = {
'client_id': 'c3cef7c66a1843f8b3a9e6a1e3160e20',
'grant_type': 'password',
'source': 'com.zhihu.web',
'username': "+86xxxxxx",
'password': "xxxxxxxx",
# 传入'cn'是倒立汉字验证码,
'lang': 'en',
'ref_source': 'homepage'
}
headers = {
'Connection': 'keep-alive',
'Host': 'www.zhihu.com',
'Referer': 'https://www.zhihu.com/',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/69.0.3497.100 Safari/537.36'
}
def start_requests(self):
if self.login_data["lang"] == 'cn':
api = 'https://www.zhihu.com/api/v3/oauth/captcha?lang=cn'
else:
api = 'https://www.zhihu.com/api/v3/oauth/captcha?lang=en'
yield scrapy.Request(url=api, headers=self.headers, callback=self._is_need_captcha)
def _is_need_captcha(self, response):
show_captcha = re.search(r'true', response.text)
if show_captcha:
yield scrapy.Request(url=response.url,
headers=self.headers,
method="PUT",
callback=self._get_captcha)
else:
timestamp = str(int(time.time() * 1000))
self.login_data.update({
'captcha': "",
'timestamp': timestamp,
'signature': self._get_signature(timestamp)
})
yield scrapy.FormRequest(
url=self.login_api,
formdata=self.login_data,
headers=self.headers,
callback=self.check_login
)
def _get_captcha(self, response):
json_data = json.loads(response.text)
img_base64 = json_data['img_base64'].replace(r'\n', '')
with open('./captcha.jpg', 'wb') as f:
f.write(base64.b64decode(img_base64))
img = Image.open('./captcha.jpg')
if self.login_data["lang"] == 'cn':
plt.imshow(img)
print('点击所有倒立的汉字,按回车提交')
points = plt.ginput(7)
capt = json.dumps({'img_size': [200, 44],
'input_points': [[i[0] / 2, i[1] / 2] for i in points]})
else:
img.show()
capt = input('请输入图片里的验证码:')
# 这里必须先把参数 POST 验证码接口
yield scrapy.FormRequest(url=response.url,
formdata={'input_text': capt},
headers=self.headers,
callback=self.captcha_login,
meta={"captcha":capt}
)
def captcha_login(self, response):
timestamp = str(int(time.time() * 1000))
self.login_data.update({
'captcha': response.meta['captcha'],
'timestamp': timestamp,
'signature': self._get_signature(timestamp)
})
yield scrapy.FormRequest(
url=self.login_api,
formdata=self.login_data,
headers=self.headers,
callback=self.check_login
)
def check_login(self, response):
yield scrapy.Request(
url=self.login_url,
headers=self.headers,
callback=self.parse
)
def _get_signature(self, timestamp):
"""
通过 Hmac 算法计算返回签名
实际是几个固定字符串加时间戳
:param timestamp: 时间戳
:return: 签名
"""
ha = hmac.new(b'd1b964811afb40118a12068ff74a12f4', digestmod=hashlib.sha1)
grant_type = self.login_data['grant_type']
client_id = self.login_data['client_id']
source = self.login_data['source']
ha.update(bytes((grant_type + client_id + source + timestamp), 'utf-8'))
return ha.hexdigest()
def parse(self, response):
print(response.text)
数据库设计
DROP TABLE IF EXISTS `zhihu_question`;
CREATE TABLE `zhihu_question` (
`zhuhu_id` bigint(20) NOT NULL,
`topics` varchar(255) DEFAULT NULL,
`url` varchar(300) NOT NULL,
`title` varchar(255) NOT NULL,
`content` longtext NOT NULL,
`create_time` datetime DEFAULT NULL,
`update_time` datetime DEFAULT NULL,
`answer_num` int(11) NOT NULL DEFAULT '0',
`comments_num` int(11) NOT NULL DEFAULT '0',
`watch_user_num` int(11) NOT NULL DEFAULT '0',
`click_num` int(11) NOT NULL DEFAULT '0',
`crawl_time` datetime NOT NULL,
`crawl_update_time` datetime DEFAULT NULL,
PRIMARY KEY (`zhuhu_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
DROP TABLE IF EXISTS `zhihu_answer`;
CREATE TABLE `zhihu_answer` (
`zhihu_id` bigint(20) NOT NULL,
`url` varchar(255) NOT NULL,
`question_id` bigint(20) NOT NULL,
`author_id` varchar(100) DEFAULT NULL,
`content` longtext NOT NULL,
`praise_num` int(11) NOT NULL DEFAULT '0',
`comments_num` int(11) NOT NULL DEFAULT '0',
`create_time` datetime NOT NULL,
`update_time` datetime NOT NULL,
`crawl_time` datetime NOT NULL,
`crawl_update_time` datetime DEFAULT NULL,
PRIMARY KEY (`zhihu_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
页面解析
def parse(self, response):
"""
提取出html页面中的所有url 并跟踪这些url进行一步爬取
如果提取的url中格式为 /question/xxx 就下载之后直接进入解析函数
"""
all_urls = response.css("a::attr(href)").extract()
all_urls = [urljoin(response.url, url) for url in all_urls]
all_urls = filter(lambda x: True if x.startswith("https") else False, all_urls)
for url in all_urls:
match_obj = re.match("(.*zhihu.com/question/(\d+))(/|$).*", url)
if match_obj:
# 如果提取到question相关的页面则下载后交由提取函数进行提取
request_url = match_obj.group(1)
yield scrapy.Request(request_url, headers=self.headers, callback=self.parse_question)
else:
# 如果不是question页面则直接进一步跟踪
yield scrapy.Request(url, headers=self.headers, callback=self.parse)
def parse_question(self, response):
match_obj = re.match("(.*zhihu.com/question/(\d+))(/|$).*", response.url)
if match_obj:
question_id = int(match_obj.group(2))
item_loader = ItemLoader(item=ZhihuQuestionItem(), response=response)
item_loader.add_css("title", "h1.QuestionHeader-title::text")
item_loader.add_css("content", ".QuestionHeader-detail")
item_loader.add_value("url", response.url)
item_loader.add_value("zhihu_id", question_id)
item_loader.add_css("answer_num", ".List-headerText span::text")
item_loader.add_css("comments_num", ".QuestionHeader-actions button::text")
item_loader.add_css("watch_user_num", ".NumberBoard-value::text")
item_loader.add_css("topics", ".QuestionHeader-topics .Popover div::text")
question_item = item_loader.load_item()
yield scrapy.Request(self.start_answer_url.format(question_id, 20, 0), headers=self.headers, callback=self.parse_answer)
yield question_item
def parse_answer(self, response):
#处理question的answer
ans_json = json.loads(response.text)
is_end = ans_json["paging"]["is_end"]
next_url = ans_json["paging"]["next"]
#提取answer的具体字段
for answer in ans_json["data"]:
answer_item = ZhihuAnswerItem()
answer_item["zhihu_id"] = answer["id"]
answer_item["url"] = answer["url"]
answer_item["question_id"] = answer["question"]["id"]
answer_item["author_id"] = answer["author"]["id"] if "id" in answer["author"] else None
answer_item["content"] = answer["content"] if "content" in answer else None
answer_item["parise_num"] = answer["voteup_count"]
answer_item["comments_num"] = answer["comment_count"]
answer_item["create_time"] = answer["created_time"]
answer_item["update_time"] = answer["updated_time"]
answer_item["crawl_time"] = datetime.datetime.now()
yield answer_item
if not is_end:
yield scrapy.Request(next_url, headers=self.headers, callback=self.parse_answer)
items
class ZhihuQuestionItem(scrapy.Item):
#知乎的问题 item
zhihu_id = scrapy.Field()
topics = scrapy.Field()
url = scrapy.Field()
title = scrapy.Field()
content = scrapy.Field()
answer_num = scrapy.Field()
comments_num = scrapy.Field()
watch_user_num = scrapy.Field()
click_num = scrapy.Field()
crawl_time = scrapy.Field()
def get_insert_sql(self):
#插入知乎question表的sql语句
insert_sql = """
insert into zhihu_question(zhihu_id, topics, url, title, content, answer_num, comments_num,
watch_user_num, click_num, crawl_time
)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
ON DUPLICATE KEY UPDATE content=VALUES(content), answer_num=VALUES(answer_num), comments_num=VALUES(comments_num),
watch_user_num=VALUES(watch_user_num), click_num=VALUES(click_num)
"""
zhihu_id = self["zhihu_id"][0]
topics = ",".join(self["topics"])
url = self["url"][0]
title = "".join(self["title"])
content = "".join(self["content"])
answer_num = extract_num("".join(self["answer_num"]))
comments_num = extract_num("".join(self["comments_num"]))
if len(self["watch_user_num"]) == 2:
watch_user_num = int(self["watch_user_num"][0])
click_num = int(self["watch_user_num"][1])
else:
watch_user_num = int(self["watch_user_num"][0])
click_num = 0
crawl_time = datetime.datetime.now().strftime(SQL_DATETIME_FORMAT)
params = (zhihu_id, topics, url, title, content, answer_num, comments_num,
watch_user_num, click_num, crawl_time)
return insert_sql, params
class ZhihuAnswerItem(scrapy.Item):
#知乎的问题回答item
zhihu_id = scrapy.Field()
url = scrapy.Field()
question_id = scrapy.Field()
author_id = scrapy.Field()
content = scrapy.Field()
parise_num = scrapy.Field()
comments_num = scrapy.Field()
create_time = scrapy.Field()
update_time = scrapy.Field()
crawl_time = scrapy.Field()
def get_insert_sql(self):
#插入知乎question表的sql语句
insert_sql = """
insert into zhihu_answer(zhihu_id, url, question_id, author_id, content, parise_num, comments_num,
create_time, update_time, crawl_time
) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
ON DUPLICATE KEY UPDATE content=VALUES(content), comments_num=VALUES(comments_num), parise_num=VALUES(parise_num),
update_time=VALUES(update_time)
"""
create_time = datetime.datetime.fromtimestamp(self["create_time"]).strftime(SQL_DATETIME_FORMAT)
update_time = datetime.datetime.fromtimestamp(self["update_time"]).strftime(SQL_DATETIME_FORMAT)
params = (
self["zhihu_id"], self["url"], self["question_id"],
self["author_id"], self["content"], self["parise_num"],
self["comments_num"], create_time, update_time,
self["crawl_time"].strftime(SQL_DATETIME_FORMAT),
)
return insert_sql, params
pipelines
def do_insert(self, cursor, item):
# 执行具体的插入
# 根据不同的item 构建不同的sql语句并插入到mysql中
insert_sql, params = item.get_insert_sql()
cursor.execute(insert_sql, params)
scrapy爬取知乎问答的更多相关文章
- 利用 Scrapy 爬取知乎用户信息
思路:通过获取知乎某个大V的关注列表和被关注列表,查看该大V和其关注用户和被关注用户的详细信息,然后通过层层递归调用,实现获取关注用户和被关注用户的关注列表和被关注列表,最终实现获取大量用户信息. 一 ...
- python scrapy爬取知乎问题和收藏夹下所有答案的内容和图片
上文介绍了爬取知乎问题信息的整个过程,这里介绍下爬取问题下所有答案的内容和图片,大致过程相同,部分核心代码不同. 爬取一个问题的所有内容流程大致如下: 一个问题url 请求url,获取问题下的答案个数 ...
- 使用python scrapy爬取知乎提问信息
前文介绍了python的scrapy爬虫框架和登录知乎的方法. 这里介绍如何爬取知乎的问题信息,并保存到mysql数据库中. 首先,看一下我要爬取哪些内容: 如下图所示,我要爬取一个问题的6个信息: ...
- scrapy 爬取知乎问题、答案 ,并异步写入数据库(mysql)
python版本 python2.7 爬取知乎流程: 一 .分析 在访问知乎首页的时候(https://www.zhihu.com),在没有登录的情况下,会进行重定向到(https://www. ...
- scrapy爬取知乎某个问题下的所有图片
前言: 1.仅仅是想下载图片,别人上传的图片也是没有版权的,下载来可以自己欣赏做手机背景但不商用 2.由于爬虫周期的问题,这个代码写于2019.02.13 1.关于知乎爬虫 网上能访问到的理论上都能爬 ...
- 爬虫(十六):scrapy爬取知乎用户信息
一:爬取思路 首先我们应该找到一个账号,这个账号被关注的人和关注的人都相对比较多的,就是下图中金字塔顶端的人,然后通过爬取这个账号的信息后,再爬取他关注的人和被关注的人的账号信息,然后爬取被关注人的账 ...
- scrapy-redis分布式爬取知乎问答,使用docker布置多台机器。
先上结果: 问题: 答案: 可以看到现在答案文档有十万多,十万个为什么~hh 正文开始: 分布式爬虫应该是在多台服务器(A B C服务器)布置爬虫环境,让它们重复交叉爬取,这样的话需要用到状态管理器. ...
- 爬虫实战--利用Scrapy爬取知乎用户信息
思路: 主要逻辑图:
- 教程+资源,python scrapy实战爬取知乎最性感妹子的爆照合集(12G)!
一.出发点: 之前在知乎看到一位大牛(二胖)写的一篇文章:python爬取知乎最受欢迎的妹子(大概题目是这个,具体记不清了),但是这位二胖哥没有给出源码,而我也没用过python,正好顺便学一学,所以 ...
随机推荐
- 教你使用HTML5原生对话框元素,轻松创建模态框组件
HTML 5.2草案加入了新的dialog元素.但是是一种实验技术. 以前,如果我们想要构建任何形式的模式对话框或对话框,我们需要有一个背景,一个关闭按钮,将事件绑定在对话框中的方式安排我们的标记,找 ...
- Leetcode 686 Repeated String Match
Given two strings A and B, find the minimum number of times A has to be repeated such that B is a su ...
- Python-Requests库详解
查看一下是否安装requests库 什么是Requests Requests是用python语言基于urllib编写的,采用的是Apache2 Licensed开源协议的HTTP库如果你看过上篇文章关 ...
- H5 38-背景图片和插入图片区别
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 浅谈一类无关序列有前缀和性质的统计问题的离线解法 BZOJ3626
每次询问[l,r]区间,但所有信息是按另一种序列给出的,因此无法使用区间数据结构做这种题.将每个询问改为[1,x],考虑离线,则从1~n依次修改并查询即可. BZOJ3626 给定一颗树,每次询问给定 ...
- Diverse Garland CodeForces - 1108D (贪心+暴力枚举)
You have a garland consisting of nn lamps. Each lamp is colored red, green or blue. The color of the ...
- Division and Union CodeForces - 1101C (排序后处理)
There are nn segments [li,ri][li,ri] for 1≤i≤n1≤i≤n. You should divide all segments into two non-emp ...
- java总结:Java中获取系统时间(年、月、日)以及下拉菜单默认选择系统年、月、日的方法
<!-- 获取系统当前的年.月.日 --> <%@ page import="java.util.*"%> <% Calendar calendar= ...
- css3新属性box-orient
前言 box-orient属性经常与display:box属性结合使用 div { width:350px; height:100px; border:1px solid black; /* Fire ...
- mysql sql执行计划
查看Mysql执行计划 使用navicat查看mysql执行计划: 打开profile分析工具: 查看是否生效:show variable like ‘%profil%’; 查看进程:show pro ...