[SCOI2016]萌萌哒(倍增+并查集)
一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四个数,l1,r1,l2,r2,即两个长度相同的区间,表示子串Sl1Sl1+1Sl1+2...Sr1与Sl2Sl2+1Sl2+2...Sr2完全相同。比如n=6时,某限制条件l1=1,r1=3,l2=4,r2=6,那么123123,351351均满足条件,但是12012,131141不满足条件,前者数的长度不为6,后者第二位与第五位不同。问满足以上所有条件的数有多少个。
Solution
涨姿势了。
不难想到用并查集维护数字之间的相等关系,最后用联通块个数统计答案。
但这样的复杂度是n^2的,需要去优化它,
考虑到每次合并都是两段等长的区间进行合并,所以我们考虑使用倍增。
我们开nlogn个并查集,num[i][j]表示从i开始的2^j个数,每次区间合并我们把它拆成logn个区间分别合并。
最后自顶向底合并儿子,就像线段树一样,
Code
#include<iostream>
#include<cstdio>
#define N 100002
using namespace std;
typedef long long ll;
const int mod=1e9+;
int num[N][],f[N*],n,m,tot,son[N*][],l1,r1,l2,r2;
int find(int x){return f[x]=f[x]==x?x:find(f[x]);}
long long power(ll x,int y){
ll ans=;
while(y){
if(y&)(ans*=x)%=mod;
(x*=x)%=mod;
y>>=;
}
return ans;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;(<<i)<=n;++i)
for(int j=;j+(<<i)-<=n;++j){
num[j][i]=++tot;f[tot]=tot;
if(i){
son[tot][]=num[j][i-];
son[tot][]=num[j+(<<i-)][i-];
}
}
for(int i=;i<=m;++i){
scanf("%d%d%d%d",&l1,&r1,&l2,&r2);
int len=r1-l1+;
for(int j=;j>=;--j)
if((<<j)<=len){
int x=find(num[l1][j]),y=find(num[l2][j]);
if(x!=y)f[x]=y;
len-=(<<j);l1+=(<<j);l2+=(<<j);
}
}
for(int i=;i>=;--i)
for(int j=;j+(<<i)-<=n;++j){
int root=num[j][i];
if(find(root)!=root){
int x=find(son[root][]),y=find(son[f[root]][]);
if(x!=y)f[x]=y;
x=find(son[root][]),y=find(son[f[root]][]);
if(x!=y)f[x]=y;
}
}
int ans=;
for(int i=;i<=n;++i)if(find(num[i][])==num[i][])ans++;
printf("%lld",*power(,ans-)%mod);
return ;
}
[SCOI2016]萌萌哒(倍增+并查集)的更多相关文章
- 【BZOJ4569】[Scoi2016]萌萌哒 倍增+并查集
[BZOJ4569][Scoi2016]萌萌哒 Description 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四 ...
- [BZOJ4569][SCOI2016]萌萌哒(倍增+并查集)
首先有一个显然的$O(n^2)$暴力做法,将每个位置看成点,然后将所有限制相等的数之间用并查集合并,最后答案就是9*(10^连通块的个数).(特判n=1时就是10). 然后比较容易想到的是,由于每次合 ...
- 2018.07.31 bzoj4569: [Scoi2016]萌萌哒(并查集+倍增)
传送门 对于每个限制,使用倍增的二进制拆分思想,用并查集数组fa[i][j]" role="presentation" style="position: rel ...
- BZOJ4569 [SCOI2016]萌萌哒 【并查集 + 倍增】
题目链接 BZOJ4569 题解 倍增的思想很棒 题目实际上就是每次让我们合并两个区间对应位置的数,最后的答案\(ans = 9 \times 10^{tot - 1}\),\(tot\)是联通块数, ...
- BZOJ4569 [Scoi2016]萌萌哒(并查集,倍增)
类似\(ST表\)的思想,倍增\(log(n)\)地合并 你是我家的吗?不是就来呀啦啦啦.还有要来的吗?没了!那有多少个家就映射多少答案呀 倍增原来这么好玩 #include <iostream ...
- 洛谷P3295 萌萌哒 [SCOI2016] 倍增+并查集
正解:倍增+并查集 解题报告: 传送门! 首先不难想到暴力?就考虑把区间相等转化成对应点对相等,然后直接对应点连边,最后求有几个连通块就好辣 然后看下复杂度,修改是O(n2)查询是O(n),就比较容易 ...
- 【BZOJ4569】萌萌哒(并查集,倍增)
[BZOJ4569]萌萌哒(并查集,倍增) 题面 BZOJ 题意: 有一个长度为\(n\)的数 给定\(m\)个限制条件 每次限制\(l1-r1\)与\(l2-r2\)是相同的 求出方案数 题解 如果 ...
- 【BZOJ 4569】 4569: [Scoi2016]萌萌哒 (倍增+并查集)
4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 865 Solved: 414 Description 一个长 ...
- 洛谷P3295 [SCOI2016]萌萌哒(倍增+并查集)
传送门 思路太妙了啊…… 容易才怪想到暴力,把区间内的每一个数字用并查集维护相等,然后设最后总共有$k$个并查集,那么答案就是$9*10^{k-1}$(因为第一位不能为0) 考虑倍增.我们设$f[i] ...
随机推荐
- 爬虫——xpath
1.什么是xpath? Xpath,全称XML Path Language,即XML路径语言.它是一门在XML之后查找信息的语言,也同样适用于HTML文档的搜索.在做爬虫的时候,我们用XPath语言来 ...
- 08-webpack的介绍
在这里我仅仅的是对webpack做个讲解,webpack这个工具非常强大,解决了我们前端很繁琐的一些工具流程繁琐的事情.如果感兴趣的同学,简易还是看官网吧. 中文链接地址:https://www.we ...
- Mysql中的排序规则utf8_unicode_ci、utf8_general_ci总结
Mysql中utf8_general_ci与utf8_unicode_ci有什么区别呢?在编程语言中,通常用unicode对中文字符做处理,防止出现乱码,那么在MySQL里,为什么大家都使用utf8_ ...
- 10 Comparisons with adjectvies and nouns
1 比较级用来比较两个词条之间的关系,比较级是通过在形容词后加 er 或者在形容词之前加 more 构成. 它的反义句是通过在形容词前加 less 或者 not as构成. Perfume sales ...
- [转帖]Linux的标准输入 标准输出和错误输出
Linux标准输入.输出和错误和文件重定向 专题 https://www.cnblogs.com/softidea/p/3965093.html 感觉自己对 这一块的理解一直不好 昨天同事给了一个 b ...
- [转帖]FORFILES 的简单介绍。
FORFILES https://blog.csdn.net/sandy9919/article/details/82932460 命令格式: forfiles.exe /p "D:\备份& ...
- Day1 基础知识
数据类型,字符编码 二进制: 定义:二进制数据是用0和1两个数码来表示的数.它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”.当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是 ...
- js中style,currentStyle和getComputedStyle的区别以及获取css样式操作方法
用js的style只能获取元素的内联样式,内部样式和外部样式使用style是获取不到的. currentStyle可以弥补style的不足(可获取内联样式,内部样式和外部样式),但是只适用于IE. g ...
- 取消 Vue 中格式编译警告
使用VS Code在学习 Vue 的过程中,博主是在2.0之后开始学习的,在写项目的时候发现控制台经常会报一大堆的警告,都是关于格式的,有时候少空格,有时候多空格,不胜其烦,出现这个问题是因为在初始化 ...
- 前端开发之css
<!--页面中的组成部分通常随便打开一个网页,有文字,图片,视频,表格,音频,表单(注册信息) css 属性/尺寸/边框/背景 1.css的尺寸属性,就是大小width max-width mi ...