题目链接: https://nanti.jisuanke.com/t/30994

Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi​ problems, the p_{i, 1}pi,1​-th, p_{i, 2}pi,2​-th, ......, p_{i, s_i}pi,si​​-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai​+bi​ points. (|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si​+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13 points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55 points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

给n个问题,然后每个问题 给出a,b,s 分别表示 第i个解决这个题,就给 (a*i+b) 的收益,s表示有 s个前置问题,必须回答出来 s个前置问题 才能解决这个问题

之前没有写过状压DP, 但是了解过旅行商问题,所以,感觉这个题目暴力莽,就能过了

dp[state] 中 state按照每个2进制位,如果为1,代表这个题被解决,所以,dp[state] 表示 相应位为1的题目都被解决的 最大收益(因为每个题解决的顺序不同,所以可能有不同的收益,但是我们 状态表示的是最大收益)

然后我们可以用 pre[i] 表示想要解决第 i 个问题,需要解决的问题的(二进制为1)集合

接着我们就可以DP了

用cnt[state] 表示 state这个状态之前已经解决多少个问题了

对于第 i 次

  对于 第 j 个问题

    对于 每个状态k

      如果状态k

        如果 已经解决 i-1个问题 && 状态 k 没解决第j个问题 && 状态k 已经解决了第j个问题的 前置问题

        分别对应  cnt[k] == i-1  &&  ((k>>j)&1)==0  && (k&pre[j]) ==pre[j]

        那么  state = k+(1<<j) ,这个状态 dp[state] 就可以更新成 第i次解决 j题的收益+dp[k]

但是 这里我们这里还是过不了问题 , 还要保证一个条件 即  k+(1<<j)  < (1<<n) 必须可以更新的状态 小于 (1<<n),超过的状态 无用,会得出错误的结果

#include<bits/stdc++.h>
using namespace std; const int N =<<;
typedef long long ll; int n,a[],b[],pre[];
ll dp[N],cnt[N]; void solve() {
dp[] = ;
ll res = ;
for(int i=; i<=n; i++) {
for(int j=; j<n; j++) {
for(int k=; k<(<<n); k++) {
if(cnt[k]!=i- || ((k>>j)&)== || (k&pre[j])!=pre[j])continue;
if(k+(<<j) >=(<<n)) continue;
if(dp[k]+1LL*a[j]*i+b[j] >= dp[k+(<<j)]) {
dp[k+(<<j)] = dp[k]+a[j]*i+b[j];
cnt[k+(<<j)] = cnt[k]+;
res = max(res, dp[k+(<<j)]);
}
}
}
}
cout << res <<endl;
} int main ()
{
//freopen("in.txt","r",stdin);
scanf("%d", &n);
for(int i=; i<n; i++)
{
int T;
scanf("%d %d %d",&a[i], &b[i], &T);
while (T--) {
int k; scanf("%d",&k);
pre[i] |= (<<(k-));
}
}
solve();
return ;
}

ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 E. AC Challenge (状态压缩DP)

    Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answe ...

  2. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge(状压dp)

    https://nanti.jisuanke.com/t/30994 题意 给你n个题目,对于每个题目,在做这个题目之前,规定了必须先做哪几个题目,第t个做的题目i得分是t×ai+bi问最终的最大得分 ...

  3. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  4. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  5. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  6. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  7. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  8. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  9. ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall

    题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K   Feeling hungry, a cute hamster decides to o ...

随机推荐

  1. Kubernetes 1.8火热出炉:稳定性、安全性与存储支持能力全面提升

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/M2l0ZgSsVc7r69eFdTj/article/details/78130225 周三,Kub ...

  2. ubuntu 安装ftp,配置,和java调用

    1:安装 ftp服务器 sudo apt-get install vsftpd 自动安装使用的是主机的用户名和密码:liyafei,1367xxx 访问方式,ftp://localhost:21,ft ...

  3. Gcc ------ gcc的使用简介与命令行参数说明

    gcc的使用简介与命令行参数说明 2011年06月19日 20:29:00 阅读数:10221 2011-06-19 wcdj 参考:<GNU gcc嵌入式系统开发 作者:董文军> (一) ...

  4. MVC html.beginform & ajax.beginform

    1.指定表单提交方式和路径等 @using (Html.BeginForm("Index", "Home", FormMethod.Get, new { nam ...

  5. Oracle业务用户密码过期问题的解决

    实验环境:Oracle 11.2.0.4 如果DBA不知道业务用户密码,当业务密码过期,应用要求DBA帮忙重设为原来的密码. 1.查询业务用户密码 从user$查到hash加密过的值: select ...

  6. Leetcode: Repeated DNA Sequence

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  7. git克隆代码

    1.vs--team explorer-clone,或者team-connect to tfs-clone 2.1输入git的url,2输入本地放代码的文件夹,3点clone,克隆出4.双击4 3.点 ...

  8. VCS中的覆盖率分析

    VCS在仿真过程中,也可以收集Coverage Metric.其中覆盖率类型有: 1)Code Coverage:包括control_flow和value两部分的coverage,line_cover ...

  9. SV搭建验证环境

    1)首先定义纯虚类Sv_object,主要实现下边两个function: 定义local static 变量nextobjectID; 虚方法 virtual function void copy(S ...

  10. yii2之创建管理员

    第一步,使用迁移文件建表admin 先建立数据迁移文件: 小贴士,如果发现自己改错了,需要重新修改迁移文件 第二步,使用gii工具创建model 创建一个新的model,继承AdminAR,方便以后管 ...