题目链接: https://nanti.jisuanke.com/t/30994

Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi​ problems, the p_{i, 1}pi,1​-th, p_{i, 2}pi,2​-th, ......, p_{i, s_i}pi,si​​-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai​+bi​ points. (|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si​+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13 points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55 points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

给n个问题,然后每个问题 给出a,b,s 分别表示 第i个解决这个题,就给 (a*i+b) 的收益,s表示有 s个前置问题,必须回答出来 s个前置问题 才能解决这个问题

之前没有写过状压DP, 但是了解过旅行商问题,所以,感觉这个题目暴力莽,就能过了

dp[state] 中 state按照每个2进制位,如果为1,代表这个题被解决,所以,dp[state] 表示 相应位为1的题目都被解决的 最大收益(因为每个题解决的顺序不同,所以可能有不同的收益,但是我们 状态表示的是最大收益)

然后我们可以用 pre[i] 表示想要解决第 i 个问题,需要解决的问题的(二进制为1)集合

接着我们就可以DP了

用cnt[state] 表示 state这个状态之前已经解决多少个问题了

对于第 i 次

  对于 第 j 个问题

    对于 每个状态k

      如果状态k

        如果 已经解决 i-1个问题 && 状态 k 没解决第j个问题 && 状态k 已经解决了第j个问题的 前置问题

        分别对应  cnt[k] == i-1  &&  ((k>>j)&1)==0  && (k&pre[j]) ==pre[j]

        那么  state = k+(1<<j) ,这个状态 dp[state] 就可以更新成 第i次解决 j题的收益+dp[k]

但是 这里我们这里还是过不了问题 , 还要保证一个条件 即  k+(1<<j)  < (1<<n) 必须可以更新的状态 小于 (1<<n),超过的状态 无用,会得出错误的结果

#include<bits/stdc++.h>
using namespace std; const int N =<<;
typedef long long ll; int n,a[],b[],pre[];
ll dp[N],cnt[N]; void solve() {
dp[] = ;
ll res = ;
for(int i=; i<=n; i++) {
for(int j=; j<n; j++) {
for(int k=; k<(<<n); k++) {
if(cnt[k]!=i- || ((k>>j)&)== || (k&pre[j])!=pre[j])continue;
if(k+(<<j) >=(<<n)) continue;
if(dp[k]+1LL*a[j]*i+b[j] >= dp[k+(<<j)]) {
dp[k+(<<j)] = dp[k]+a[j]*i+b[j];
cnt[k+(<<j)] = cnt[k]+;
res = max(res, dp[k+(<<j)]);
}
}
}
}
cout << res <<endl;
} int main ()
{
//freopen("in.txt","r",stdin);
scanf("%d", &n);
for(int i=; i<n; i++)
{
int T;
scanf("%d %d %d",&a[i], &b[i], &T);
while (T--) {
int k; scanf("%d",&k);
pre[i] |= (<<(k-));
}
}
solve();
return ;
}

ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 E. AC Challenge (状态压缩DP)

    Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answe ...

  2. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge(状压dp)

    https://nanti.jisuanke.com/t/30994 题意 给你n个题目,对于每个题目,在做这个题目之前,规定了必须先做哪几个题目,第t个做的题目i得分是t×ai+bi问最终的最大得分 ...

  3. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  4. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  5. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  6. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  7. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  8. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  9. ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall

    题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K   Feeling hungry, a cute hamster decides to o ...

随机推荐

  1. kubernetes实战(十六):k8s高可用集群平滑升级 v1.11.x 到v1.12.x

    1.基本概念 升级之后所有的containers会重启,因为hash值会变. 不可跨版本升级. 2.升级Master节点 当前版本 [root@k8s-master01 ~]# kubeadm ver ...

  2. appstore加速审核通道

    申请入口:https://developer.apple.com/contact/app-store/?topic=expedite

  3. PHP消息队列实现及应用_慕课网学习

    https://blog.csdn.net/d_g_h/article/details/79643714 https://blog.csdn.net/tTU1EvLDeLFq5btqiK/articl ...

  4. zabbix3.0 centos7 yum 安装与简单配置

    参考文档https://www.zabbix.com/documentation/3.0/start zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案.zab ...

  5. mysql主从延迟(摘自http://www.linuxidc.com/Linux/2012-02/53995.htm)

    http://www.linuxidc.com/Linux/2012-02/53995.htm

  6. #C++初学记录(ACM试题1)

    A - Diverse Strings A string is called diverse if it contains consecutive (adjacent) letters of the ...

  7. sql server删除重复数据,保留第一条

    SELECT * FROM EnterpriseDataTools.Enterprise.CompanyMainwhere CompanyNo in (select CompanyNo from En ...

  8. 【转】SQL Server、Oracle、MySQL和Vertica数据库常用函数对比

    SQL Server.Oracle.MySQL和Vertica数据库常用函数对比 Vertica数据库是HP公司新收购的用于BI方面的数据库. 1. 绝对值 S:select abs(-1) valu ...

  9. linux常用命令:top 命令

    top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器.下面详细介绍它的使用方法.top是 一个动态显示过程,即可以通过用户按键来不断刷 ...

  10. LWIP使用经验---变态级(转)

    源:LWIP使用经验---变态级 LWIP使用经验 一 LWIP内存管理 数据包管理 设置内存大小 宏编译开关 二 LWIP启动时序 三 LWIP运行逻辑 接收数据包 SequentialAPI函数调 ...