ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP
题目链接: https://nanti.jisuanke.com/t/30994
Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.
However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi problems, the p_{i, 1}pi,1-th, p_{i, 2}pi,2-th, ......, p_{i, s_i}pi,si-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j≤n,0<j≤si,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.
"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set
If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai+bi points. (|a_i|, |b_i| \le 10^9)(∣ai∣,∣bi∣≤109).
Your task is to calculate the maximum number of points he can get in the contest.
Input
The first line of input contains an integer, nn, which is the number of problems.
Then follows nn lines, the ii-th line contains s_i + 3si+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai,bi,si,p1,p2,...,psias described in the description above.
Output
Output one line with one integer, the maximum number of points he can get in the contest.
Hint
In the first sample.
On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.
On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13 points.
On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.
On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.
On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.
So he can get 11+13+13+11+7=5511+13+13+11+7=55 points in total.
In the second sample, you should note that he doesn't have to solve all the problems.
样例输入1复制
5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4
样例输出1复制
55
样例输入2复制
1
-100 0 0
样例输出2复制
0
给n个问题,然后每个问题 给出a,b,s 分别表示 第i个解决这个题,就给 (a*i+b) 的收益,s表示有 s个前置问题,必须回答出来 s个前置问题 才能解决这个问题
之前没有写过状压DP, 但是了解过旅行商问题,所以,感觉这个题目暴力莽,就能过了
dp[state] 中 state按照每个2进制位,如果为1,代表这个题被解决,所以,dp[state] 表示 相应位为1的题目都被解决的 最大收益(因为每个题解决的顺序不同,所以可能有不同的收益,但是我们 状态表示的是最大收益)
然后我们可以用 pre[i] 表示想要解决第 i 个问题,需要解决的问题的(二进制为1)集合
接着我们就可以DP了
用cnt[state] 表示 state这个状态之前已经解决多少个问题了
对于第 i 次
对于 第 j 个问题
对于 每个状态k
如果状态k
如果 已经解决 i-1个问题 && 状态 k 没解决第j个问题 && 状态k 已经解决了第j个问题的 前置问题
分别对应 cnt[k] == i-1 && ((k>>j)&1)==0 && (k&pre[j]) ==pre[j]
那么 state = k+(1<<j) ,这个状态 dp[state] 就可以更新成 第i次解决 j题的收益+dp[k]
但是 这里我们这里还是过不了问题 , 还要保证一个条件 即 k+(1<<j) < (1<<n) 必须可以更新的状态 小于 (1<<n),超过的状态 无用,会得出错误的结果
#include<bits/stdc++.h>
using namespace std; const int N =<<;
typedef long long ll; int n,a[],b[],pre[];
ll dp[N],cnt[N]; void solve() {
dp[] = ;
ll res = ;
for(int i=; i<=n; i++) {
for(int j=; j<n; j++) {
for(int k=; k<(<<n); k++) {
if(cnt[k]!=i- || ((k>>j)&)== || (k&pre[j])!=pre[j])continue;
if(k+(<<j) >=(<<n)) continue;
if(dp[k]+1LL*a[j]*i+b[j] >= dp[k+(<<j)]) {
dp[k+(<<j)] = dp[k]+a[j]*i+b[j];
cnt[k+(<<j)] = cnt[k]+;
res = max(res, dp[k+(<<j)]);
}
}
}
}
cout << res <<endl;
} int main ()
{
//freopen("in.txt","r",stdin);
scanf("%d", &n);
for(int i=; i<n; i++)
{
int T;
scanf("%d %d %d",&a[i], &b[i], &T);
while (T--) {
int k; scanf("%d",&k);
pre[i] |= (<<(k-));
}
}
solve();
return ;
}
ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP的更多相关文章
- ACM-ICPC 2018 南京赛区网络预赛 E. AC Challenge (状态压缩DP)
Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answe ...
- ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge(状压dp)
https://nanti.jisuanke.com/t/30994 题意 给你n个题目,对于每个题目,在做这个题目之前,规定了必须先做哪几个题目,第t个做的题目i得分是t×ai+bi问最终的最大得分 ...
- ACM-ICPC 2018 南京赛区网络预赛 J.sum
A square-free integer is an integer which is indivisible by any square number except 11. For example ...
- ACM-ICPC 2018 南京赛区网络预赛 E题
ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...
- ACM-ICPC 2018 南京赛区网络预赛B
题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...
- 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)
J. Sum 26.87% 1000ms 512000K A square-free integer is an integer which is indivisible by any squar ...
- 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)
G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K During tea-drinking, princess, amongst other t ...
- 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)
A. An Olympian Math Problem 54.28% 1000ms 65536K Alice, a student of grade 66, is thinking about a ...
- ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall
题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K Feeling hungry, a cute hamster decides to o ...
随机推荐
- Core Data with Mantle
Mantle makes it easy to write a simple model layer for your Cocoa or Cocoa Touch application. Mantl ...
- CMSPRESS-PHP无限级分类2
原文章地址:http://www.thinkphp.cn/code/170.html 超级无限分类 使用简单 效率极高 核心代码10行不到 另外 求这个分类的不足,和更高效简单的无限分类方法 ^_^ ...
- mysql集群搭建,主主复制
1:mysql搭建远程连接 https://www.cnblogs.com/davidgu/p/3706663.html 2: 两台主机能够相互通信 ,使用ping C:\Users\lenovo&g ...
- (转)Elasticsearch聚合初探——metric篇
前言 ES中的聚合被分为两大类:Metric度量和bucket桶(原谅我英语差,找不到合适的词语.....就用单词来说吧!).说的通俗点,metric很像SQL中的avg.max.min等方法,而bu ...
- 什么是anaconda【转载】
转自:https://zhidao.baidu.com/question/525102108723657245.html https://zhidao.baidu.com/question/62475 ...
- Python 之 os.walk()
原文地址https://www.cnblogs.com/JetpropelledSnake/p/8982495.html http://www.runoob.com/python/o ...
- MVC备忘笔记
1.增加样式 @Html.EditorFor(model => model.AssociationName, new { @class="inputtext input-220&quo ...
- 11.2.0.4 RAC测试环境修改时区
当前问题: 系统时区修改后,集群数据库各个日志发现显示的还是之前时区的时间. 依据Linux (RHEL)修改时区更改了系统的时区后,集群数据库的各个日志还是显示之前的时区时间. 查找MOS资料 Ho ...
- js实现轮播图
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- class A where T:new()是什么意思
这是C#泛型类声明的语法 class A<T> 表示 A类接受某一种类型,泛型类型为T,需要运行时传入where表明了对类型变量T的约束关系. where T:new()指明了创建T的 ...