ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP
题目链接: https://nanti.jisuanke.com/t/30994
Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.
However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi problems, the p_{i, 1}pi,1-th, p_{i, 2}pi,2-th, ......, p_{i, s_i}pi,si-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j≤n,0<j≤si,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.
"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set
If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai+bi points. (|a_i|, |b_i| \le 10^9)(∣ai∣,∣bi∣≤109).
Your task is to calculate the maximum number of points he can get in the contest.
Input
The first line of input contains an integer, nn, which is the number of problems.
Then follows nn lines, the ii-th line contains s_i + 3si+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai,bi,si,p1,p2,...,psias described in the description above.
Output
Output one line with one integer, the maximum number of points he can get in the contest.
Hint
In the first sample.
On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.
On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13 points.
On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.
On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.
On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.
So he can get 11+13+13+11+7=5511+13+13+11+7=55 points in total.
In the second sample, you should note that he doesn't have to solve all the problems.
样例输入1复制
5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4
样例输出1复制
55
样例输入2复制
1
-100 0 0
样例输出2复制
0
给n个问题,然后每个问题 给出a,b,s 分别表示 第i个解决这个题,就给 (a*i+b) 的收益,s表示有 s个前置问题,必须回答出来 s个前置问题 才能解决这个问题
之前没有写过状压DP, 但是了解过旅行商问题,所以,感觉这个题目暴力莽,就能过了
dp[state] 中 state按照每个2进制位,如果为1,代表这个题被解决,所以,dp[state] 表示 相应位为1的题目都被解决的 最大收益(因为每个题解决的顺序不同,所以可能有不同的收益,但是我们 状态表示的是最大收益)
然后我们可以用 pre[i] 表示想要解决第 i 个问题,需要解决的问题的(二进制为1)集合
接着我们就可以DP了
用cnt[state] 表示 state这个状态之前已经解决多少个问题了
对于第 i 次
对于 第 j 个问题
对于 每个状态k
如果状态k
如果 已经解决 i-1个问题 && 状态 k 没解决第j个问题 && 状态k 已经解决了第j个问题的 前置问题
分别对应 cnt[k] == i-1 && ((k>>j)&1)==0 && (k&pre[j]) ==pre[j]
那么 state = k+(1<<j) ,这个状态 dp[state] 就可以更新成 第i次解决 j题的收益+dp[k]
但是 这里我们这里还是过不了问题 , 还要保证一个条件 即 k+(1<<j) < (1<<n) 必须可以更新的状态 小于 (1<<n),超过的状态 无用,会得出错误的结果
#include<bits/stdc++.h>
using namespace std; const int N =<<;
typedef long long ll; int n,a[],b[],pre[];
ll dp[N],cnt[N]; void solve() {
dp[] = ;
ll res = ;
for(int i=; i<=n; i++) {
for(int j=; j<n; j++) {
for(int k=; k<(<<n); k++) {
if(cnt[k]!=i- || ((k>>j)&)== || (k&pre[j])!=pre[j])continue;
if(k+(<<j) >=(<<n)) continue;
if(dp[k]+1LL*a[j]*i+b[j] >= dp[k+(<<j)]) {
dp[k+(<<j)] = dp[k]+a[j]*i+b[j];
cnt[k+(<<j)] = cnt[k]+;
res = max(res, dp[k+(<<j)]);
}
}
}
}
cout << res <<endl;
} int main ()
{
//freopen("in.txt","r",stdin);
scanf("%d", &n);
for(int i=; i<n; i++)
{
int T;
scanf("%d %d %d",&a[i], &b[i], &T);
while (T--) {
int k; scanf("%d",&k);
pre[i] |= (<<(k-));
}
}
solve();
return ;
}
ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP的更多相关文章
- ACM-ICPC 2018 南京赛区网络预赛  E. AC Challenge (状态压缩DP)
		Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answe ... 
- ACM-ICPC 2018 南京赛区网络预赛 E  AC Challenge(状压dp)
		https://nanti.jisuanke.com/t/30994 题意 给你n个题目,对于每个题目,在做这个题目之前,规定了必须先做哪几个题目,第t个做的题目i得分是t×ai+bi问最终的最大得分 ... 
- ACM-ICPC 2018 南京赛区网络预赛  J.sum
		A square-free integer is an integer which is indivisible by any square number except 11. For example ... 
- ACM-ICPC 2018 南京赛区网络预赛 E题
		ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ... 
- ACM-ICPC 2018 南京赛区网络预赛B
		题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ... 
- 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)
		J. Sum 26.87% 1000ms 512000K A square-free integer is an integer which is indivisible by any squar ... 
- 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)
		G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K During tea-drinking, princess, amongst other t ... 
- 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛  A)
		A. An Olympian Math Problem 54.28% 1000ms 65536K Alice, a student of grade 66, is thinking about a ... 
- ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall
		题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K Feeling hungry, a cute hamster decides to o ... 
随机推荐
- webview与js交互(转)
			原文:http://www.cnblogs.com/vanezkw/archive/2012/07/02/2572799.html 对于android初学者应该都了解webView这个组件.之前我也是 ... 
- struts2  OGNL(Object-Graph Navigation Language) 井号,星号,百分号
			1.“#”主要有三种用途: 访问OGNL上下文和Action上下文,#相当于ActionContext.getContext():可以访问这几个ActionContext中的属性. parameter ... 
- 据库被标记为RESTORING的处理方式,正在还原中,正在恢复
			关键词:正在还原,正在恢复,restoring,RECOVERING 转自:http://limindo.blog.163.com/blog/static/2647585620101161154121 ... 
- Windows操作系统上各种服务使用的端口号, 以及它们使用的协议的列表
			Windows操作系统上各种服务使用的端口号, 以及它们使用的协议的列表 列表如下 Port Protocol Network Service System Service System Servic ... 
- ffmpeg综合应用示例(三)——安卓手机摄像头编码
			本文的示例将实现:读取安卓手机摄像头数据并使用H.264编码格式实时编码保存为flv文件.示例包含了 1.编译适用于安卓平台的ffmpeg库 2.在java中通过JNI使用ffmpeg 3.读取安卓摄 ... 
- iptables 常用命令
			iptables service iptables save \\保存 iptables -F \\清空所有规则 iptables -F -t nat \\清空nat表 iptables -t nat ... 
- 1.keras实现-->自己训练卷积模型实现猫狗二分类(CNN)
			原数据集:包含 25000张猫狗图像,两个类别各有12500 新数据集:猫.狗 (照片大小不一样) 训练集:各1000个样本 验证集:各500个样本 测试集:各500个样本 1= 狗,0= 猫 # 将 ... 
- python ddt 实现数据驱动一
			ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试用例,如果da ... 
- react-native 0.57 run-ios 失败解决办法
			React Native 日常报错 'config.h' file not found 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_ ... 
- asp.net本地读取excel正确。但在iis服务器上就报错  未在本地计算机上注册“Microsoft.ACE.OleDb.12.0”提供程序
			本地vs2010可以上传ecxel文件.并读取数据,但部署到本地IIS.并访问.则提示: 未在本地计算机上注册“Microsoft.ACE.OleDb.12.0”提供程序 首先:确保安装了Micros ... 
