PCA 在手写数字数据集上的应用
在 skilearn 的手写数据集中,每个数据点都是 0 到 9 之间手写数字的一张 8*8 灰度图像。用 PCA 将其降维到二维,并可视化数据点,如下:
1、digits 数据演示:
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt digits = load_digits()
fig, axes = plt.subplots(2, 5, figsize=(10, 5),
subplot_kw={'xticks': (), 'yticks': ()})
for ax, img in zip(axes.ravel(), digits.images):
ax.imshow(img) plt.show()

2、将 PCA 降维到二维的数据可视化
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt # 加载数据
digits = load_digits() # 初始化一个 PCA 模型,在数据中提取两个主成分
pca = PCA(n_components=2, random_state=27)
pca.fit(digits.data)
digits_pca = pca.transform(digits.data) colors = ['#A83683', '#4E655E', '#853541', '#3A3120', '#535D8E',
'#476A2A', '#7851B8', '#DB3430', '#4A2D4E', '#875525'] plt.figure(figsize=(10, 10))
plt.xlim(digits_pca[:, 0].min(), digits_pca[:, 0].max())
plt.ylim(digits_pca[:, 1].min(), digits_pca[:, 1].max())
# 以数字符号显示每个类别的位置
for i in range(len(digits.data)):
plt.text(digits_pca[i, 0], digits_pca[i, 1], str(digits.target[i]),
color=colors[digits.target[i]], fontweight='bold', fontsize=9)
plt.xlabel('First principal component')
plt.ylabel('Second principal component') plt.show()

3、按语
用 PCA 提取的前两个主成分,可以很好的将 0、6、4 区分开来,但其他数字多有重叠。
PCA 在手写数字数据集上的应用的更多相关文章
- 机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维
PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import Rando ...
- Kannada-MNIST:一个新的手写数字数据集
TLDR: 我正在传播2个数据集: Kannada-MNIST数据集:28x28灰度图像:60k 训练集 | 10k测试集 Dig-MNIST:28x28灰度图像:10240(1024x10)(见下图 ...
- chapter02 PCA主成分分析在手写数字识别分类的应用
#coding=utf8 # 导入numpy工具包. import numpy as np # 导入pandas用于数据分析. import pandas as pd from sklearn.met ...
- 吴裕雄--天生自然python机器学习:KNN-近邻算法在手写识别系统上的应用
需要识别的数字已经使用图形处理软件,处理成具有相同的色 彩和大小® : 宽髙是32像 素 *32像素的黑白图像.尽管采用文本格式存储图像不能有效地利用内 存空间,但是为了方便理解,我们还是将图像转换为 ...
- 【Keras篇】---利用keras改写VGG16经典模型在手写数字识别体中的应用
一.前述 VGG16是由16层神经网络构成的经典模型,包括多层卷积,多层全连接层,一般我们改写的时候卷积层基本不动,全连接层从后面几层依次向前改写,因为先改参数较小的. 二.具体 1.因为本文中代码需 ...
- Tensorflow学习练习-卷积神经网络应用于手写数字数据集训练
# coding: utf-8 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data mn ...
- MNIST手写数字数据集
下载python源代码之后,使用: import input_data mnist = input_data.read_data_sets('MNIST_data/',one_hot=True) 下载 ...
- keras实现mnist手写数字数据集的训练
网络:两层卷积,两层全连接,一层softmax 代码: import numpy as np from keras.utils import to_categorical from keras imp ...
- 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集
#加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...
随机推荐
- [RN] 使用 Genymotion 导致 ” Genymotion 已连接,但无法访问互联网 “ 的错误
使用 Genymotion 导致 Genymotion 已连接,但无法访问互联网 的错误 先把要点 放前面: 网络二 一定要设置 桥接模式 网上很多文章都是设置为 NAT,笔者均失败! 笔者使用的An ...
- gif转mp4
- NLP之关键词提取(TF-IDF、Text-Rank)
1.文本关键词抽取的种类: 关键词提取方法分为有监督.半监督和无监督三种,有监督和半监督的关键词抽取方法需要浪费人力资源,所以现在使用的大多是无监督的关键词提取方法. 无监督的关键词提取方法又可以分为 ...
- 解决WIN10左侧盘符顺序问题
Windows Registry Editor Version 5.00 [-HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\ ...
- MySQL实战45讲学习笔记:第十八讲
一.引子 在 MySQL 中,有很多看上去逻辑相同,但性能却差异巨大的 SQL 语句.对这些语句使用不当的话,就会不经意间导致整个数据库的压力变大. 我今天挑选了三个这样的案例和你分享.希望再遇到相似 ...
- oracle--报错 ORA-00257
[oracle@oracle01 ~]$ rman target/ RMAN-: =========================================================== ...
- [转载]3.12 UiPath存在元素Element Exists的介绍和使用
一.Element Exists的介绍 使您能够验证UI元素是否存在,即使它不可见,输出的是一个布尔值 二.Element Exists在UiPath中的使用 1.打开设计器,在设计库中新建一个Seq ...
- PDMan-2.1.0 正式发布:用心开源,免费的国产数据库建模工具 PowerDesigner
PDMan是一款开源免费的数据库模型建模工具,支持Windows,Mac,Linux等操作系统,是PowerDesigner之外,更好的免费的替代方案.他具有颜值高,使用简单的特点.包含数据库建模,灵 ...
- 利用SQL计算两个地理坐标(经纬度)之间的地表距离
两个地理坐标(经纬度)地表距离计算公式: 公式解释如下: Long1,Lat1表示A点经纬度,Long2,Lat2表示B点经纬度: a=Lat1–Lat2 为两点纬度之差,b=Long1-Long2为 ...
- R与金钱游戏:均线黄金交叉2
从上一篇分析已经得知均线黄金交叉原则并不适用于震荡期,那有什么办法可以规避震荡期呢或者说有什么办法可以减少无脑跟的损失?我们继续玩一下. Required Packages library(quant ...