洛谷 P1950 长方形_NOI导刊2009提高(2) 题解
P1950 长方形_NOI导刊2009提高(2)
题目描述
小明今天突发奇想,想从一张用过的纸中剪出一个长方形。
为了简化问题,小明做出如下规定:
(1)这张纸的长宽分别为n,m。小明讲这张纸看成是由n*m个格子组成,在剪的时候,只能沿着格子的边缘剪。
(2)这张纸有些地方小明以前在上面画过,剪出来的长方形不能含有以前画过的地方。
(3)剪出来的长方形的大小没有限制。
小明看着这张纸,想了好多种剪的方法,可是到底有几种呢?小明数不过来,你能帮帮他吗?
输入格式
第一行两个正整数n,m,表示这张纸的长度和宽度。
接下来有n行,每行m个字符,每个字符为“*”或者“.”。
字符“*”表示以前在这个格子上画过,字符“.”表示以前在这个格子上没画过。
输出格式
仅一个整数,表示方案数。
输入输出样例
输入 #1
6 4
....
.***
...
.**
...*
.***
输出 #1
38
说明/提示
【数据规模】
对10%的数据,满足1<=n<=10,1<=m<=10
对30%的数据,满足1<=n<=50,1<=m<=50
对100%的数据,满足1<=n<=1000,1<=m<=1000
【思路】
单调队列
先输入数据
处理处每个点往上一共有多少个连续的没有被画过的点
然后每一行f[i][0]和f[i][m + 1]要赋值一个超级小的数
为了让区间边界终止与此
然后顺序扫一遍找出每一个点
左边距离他最近的一个比他矮的点
然后倒叙扫一遍找出每一个点
右边距离他最近的一个比他矮的店
中间的就是它能够构成的矩阵
矩阵组成方式是
左边区间的长度(包括中间点) * 右边区间的长度(包括中间点) * 宽(也就是f[i][j])
累加起来输出就好了
要开long long 哦不然最后两个点过不了
【完整代码】
#include<iostream>
#include<cstdio>
#include<stack>
#define int long long
using namespace std;
const int Max = 1005;
int f[Max][Max];
int a[Max];
int r[Max],l[Max];
signed main()
{
char c;
int n,m;
cin >> n >> m;
for(register int i = 1;i <= n;++ i)
{
for(register int j = 1;j <= m;++ j)
{
cin >> c;
if(c == '*')f[i][j] = 0;
else
f[i][j] = f[i - 1][j] + 1;
}
}
for(int i = 1;i <= n;++ i)
f[i][0] = f[i][m + 1] = -0x7fffffff;
int ans = 0;
for(register int i = 1;i <= n;++ i)
{
stack<int>s1,s2;
s1.push(1),s2.push(m);
for(register int ii = 2,jj = m - 1;ii <= m + 1,jj >= 0;jj --,++ ii)
{
while(!s1.empty() && f[i][ii] < f[i][s1.top()])
{
r[s1.top()] = ii;
s1.pop();
}
while(!s2.empty() && f[i][jj] <= f[i][s2.top()])
{
l[s2.top()] = jj;
s2.pop();
}
s1.push(ii);s2.push(jj);
}
for(register int j = 1;j <= m;++ j)
ans += (j - l[j]) * (r[j] - j) * f[i][j];
}
cout << ans << endl;
return 0;
}
洛谷 P1950 长方形_NOI导刊2009提高(2) 题解的更多相关文章
- 洛谷 P1950 长方形_NOI导刊2009提高(2)
传送门 思路 首先定义\(h\)数组,\(h[i][j]\)表示第\(i\)行第\(j\)列最多可以向上延伸多长(直到一个被用过的格子) 然后使用单调栈算出 \(l_i\)和 \(r_i\) ,分别是 ...
- 洛谷 P1951 收费站_NOI导刊2009提高(2) 最短路+二分
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例: 输出样例: 说明 思路 AC代码 总结 题面 题目链接 P1951 收费站_NOI导刊2009提高(2) 其 ...
- [洛谷P1951]收费站_NOI导刊2009提高(2)
题目大意:有一张$n$个点$m$条边的图,每个点有一个权值$w_i$,有边权,询问从$S$到$T$的路径中,边权和小于$s$,且$\max\limits_{路径经过k}\{w_i\}$最小,输出这个最 ...
- 洛谷 P1951 收费站_NOI导刊2009提高(2)
题目描述 在某个遥远的国家里,有n个城市.编号为1,2,3,…,n. 这个国家的政府修建了m条双向的公路.每条公路连接着两个城市.沿着某条公路,开车从一个城市到另一个城市,需要花费一定的汽油. 开车每 ...
- 洛谷——P1951 收费站_NOI导刊2009提高(2)
https://www.luogu.org/problem/show?pid=1951 题目描述 在某个遥远的国家里,有n个城市.编号为1,2,3,…,n. 这个国家的政府修建了m条双向的公路.每条公 ...
- 洛谷 P1777 帮助_NOI导刊2010提高(03) 解题报告
P1777 帮助_NOI导刊2010提高(03) 题目描述 Bubu的书架乱成一团了!帮他一下吧! 他的书架上一共有n本书.我们定义混乱值是连续相同高度书本的段数.例如,如果书的高度是30,30,31 ...
- 洛谷 P1769 淘汰赛制_NOI导刊2010提高(01)
P1769 淘汰赛制_NOI导刊2010提高(01) 题目描述 淘汰赛制是一种极其残酷的比赛制度.2n名选手分别标号1,2,3,…,2^n-1,2^n,他们将要参加n轮的激烈角逐.每一轮中,将所有参加 ...
- 洛谷 P1801 黑匣子_NOI导刊2010提高(06)(未完)
P1801 黑匣子_NOI导刊2010提高(06) 题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个 ...
- [洛谷P1801]黑匣子_NOI导刊2010提高(06)
题目大意:两个操作:向一个可重集中加入一个元素:询问第$k$大的数($k$为之前询问的个数加一) 题解:离散化,权值线段树直接查询 卡点:无 C++ Code: #include <cstdio ...
随机推荐
- vue3生命周期
介绍 vue3的生命周期函数,可以按需导入到组件中,且只能在 setup() 函数中使用 示例 import { onMounted, onUpdated } from '@vue/compositi ...
- promise实现
目录 promise实现 Promise 是 ES6 新增的语法,解决了回调地狱的问题. 可以把 Promise 看成一个状态机.初始是 pending 状态,可以通过函数 resolve 和 rej ...
- backpropagation algorithm
搞卷积神经网络的时候突然发现自己不清楚神经网络怎么训练了,满脸黑线,借此机会复习一下把. 首先放一位知乎大佬的解释.https://www.zhihu.com/question/27239198?rf ...
- PCL提取圆柱系数
网上看了很多教程,没看到圆柱提取后的系数解释. 源码如下: #include <pcl/ModelCoefficients.h> #include <pcl/io/pcd_io.h& ...
- Java调用WebService方法总结(4)--Axis调用WebService
Axis是比较常用的WebService框架,该项目在2006实现了最终版,后面就没有更新了.文中demo所使用到的软件版本:Java 1.8.0_191.Axis 1.4. 1.准备 参考Java调 ...
- 【洛谷 P4070】 [SDOI2016]生成魔咒(后缀自动机)
题目链接 建出\(SAM\)后,不同子串个数就是\(\sum len(i)-len(fa(i))\) 因为\(SAM\)在线的,所以每加入一个字符就能直接加上其贡献,于是这道题就没了. 因为\(x\) ...
- 从 SimpleIntegerProperty 看 Java属性绑定(property binding) 与 观察者模式(Observable)
//TODO:ExpressionHelper .bindBidirectional双向绑定.以及IntegerExpression的一系列算术方法和返回的IntegerBinding暂未详细解析(比 ...
- TweenMax—ScrambleText插件 实现类似电脑破译密码的特效
首先贴一下TweenMax的中文网:https://www.tweenmax.com.cn/ 首先先展示一下最后的效果,需要的就继续看下去: 那团乱码是会一直变的 那么如何实现上图的效果呢??? 其实 ...
- day33-python之多线程
1.多线程实例 # import threading # import time # # import threading import time class MyThread(threading.T ...
- MySQL Hardware--FIO压测
FIO参数 .txt 支持文件系统或者裸设备,-filename=/dev/sda2或-filename=/dev/sdb direct= 测试过程绕过机器自带的buffer,使测试结果更真实 rw= ...