一、图解

二、源码分析

###org.apache.spark.rdd/RDD.scalal
###入口 final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
if (storageLevel != StorageLevel.NONE) {
// cacheManager相关东西
// 如果storageLevel不为NONE,就是说,我们之前持久化过RDD,那么就不要直接去父RDD执行算子,计算新的RDD的partition了
// 优先尝试使用CacheManager,去获取持久化的数据
SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel)
} else {
// 进行rdd partition的计算
computeOrReadCheckpoint(split, context)
}
} ###org.apache.spark/CacheManager.scala def getOrCompute[T](
rdd: RDD[T],
partition: Partition,
context: TaskContext,
storageLevel: StorageLevel): Iterator[T] = { val key = RDDBlockId(rdd.id, partition.index)
logDebug(s"Looking for partition $key")
// 直接用BlockManager来获取数据,如果获取到了,直接返回就好了
blockManager.get(key) match {
case Some(blockResult) =>
// Partition is already materialized, so just return its values
val inputMetrics = blockResult.inputMetrics
val existingMetrics = context.taskMetrics
.getInputMetricsForReadMethod(inputMetrics.readMethod)
existingMetrics.incBytesRead(inputMetrics.bytesRead) val iter = blockResult.data.asInstanceOf[Iterator[T]]
new InterruptibleIterator[T](context, iter) {
override def next(): T = {
existingMetrics.incRecordsRead(1)
delegate.next()
}
}
// 如果从BlockManager获取不到数据,要进行后续的处理
// 虽然RDD持久化过,但是因为未知原因,书籍即不在本地内存或磁盘,也不在远程BlockManager的本地或磁盘
case None =>
// Acquire a lock for loading this partition
// If another thread already holds the lock, wait for it to finish return its results
// 再次调用一次BlockManager的get()方法,去获取数据,如果获取到了,那么直接返回数据,如果还是没有获取数据,那么往后走
val storedValues = acquireLockForPartition[T](key)
if (storedValues.isDefined) {
return new InterruptibleIterator[T](context, storedValues.get)
} // Otherwise, we have to load the partition ourselves
try {
logInfo(s"Partition $key not found, computing it")
// 调用computeOrReadCheckpoint()方法
// 如果rdd之前checkpoint过,那么尝试读取它的checkpoint,如果rdd没有checkpoint过,那么只能重新使用父RDD的数据,执行算子,计算一份
val computedValues = rdd.computeOrReadCheckpoint(partition, context) // If the task is running locally, do not persist the result
if (context.isRunningLocally) {
return computedValues
} // Otherwise, cache the values and keep track of any updates in block statuses
val updatedBlocks = new ArrayBuffer[(BlockId, BlockStatus)]
// 由于走CacheManager,肯定意味着RDD是设置过持久化级别的,只是因为某些原因,持久化数据没有找到,才会到这
// 所以读取了checkpoint的数据,或者是重新计算数据之后,要用putInBlockManager()方法,将数据再BlockManager中持久化一份
val cachedValues = putInBlockManager(key, computedValues, storageLevel, updatedBlocks)
val metrics = context.taskMetrics
val lastUpdatedBlocks = metrics.updatedBlocks.getOrElse(Seq[(BlockId, BlockStatus)]())
metrics.updatedBlocks = Some(lastUpdatedBlocks ++ updatedBlocks.toSeq)
new InterruptibleIterator(context, cachedValues) } finally {
loading.synchronized {
loading.remove(key)
loading.notifyAll()
}
}
}
} ###org.apache.spark.storage/BlockManager.scala // 通过BlockManager获取数据的入口方法,优先从本地获取,如果本地没有,那么从远程获取
def get(blockId: BlockId): Option[BlockResult] = {
val local = getLocal(blockId)
if (local.isDefined) {
logInfo(s"Found block $blockId locally")
return local
}
val remote = getRemote(blockId)
if (remote.isDefined) {
logInfo(s"Found block $blockId remotely")
return remote
}
None
} ###org.apache.spark.rdd/RDD.scalal private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] =
{
// Checkpointed相关先忽略
if (isCheckpointed) firstParent[T].iterator(split, context) else compute(split, context)
} ###org.apache.spark/CacheManager.scala private def putInBlockManager[T](
key: BlockId,
values: Iterator[T],
level: StorageLevel,
updatedBlocks: ArrayBuffer[(BlockId, BlockStatus)],
effectiveStorageLevel: Option[StorageLevel] = None): Iterator[T] = { val putLevel = effectiveStorageLevel.getOrElse(level)
// 如果持久化级别,没有指定内存级别,仅仅是纯磁盘的级别
if (!putLevel.useMemory) {
/*
* This RDD is not to be cached in memory, so we can just pass the computed values as an
* iterator directly to the BlockManager rather than first fully unrolling it in memory.
*/
updatedBlocks ++=
// 直接调用blockManager的putIterator()方法,将数据写入磁盘即可
blockManager.putIterator(key, values, level, tellMaster = true, effectiveStorageLevel)
blockManager.get(key) match {
case Some(v) => v.data.asInstanceOf[Iterator[T]]
case None =>
logInfo(s"Failure to store $key")
throw new BlockException(key, s"Block manager failed to return cached value for $key!")
}
}
// 如果指定了内存级别,往下看
else {
/*
* This RDD is to be cached in memory. In this case we cannot pass the computed values
* to the BlockManager as an iterator and expect to read it back later. This is because
* we may end up dropping a partition from memory store before getting it back.
*
* In addition, we must be careful to not unroll the entire partition in memory at once.
* Otherwise, we may cause an OOM exception if the JVM does not have enough space for this
* single partition. Instead, we unroll the values cautiously, potentially aborting and
* dropping the partition to disk if applicable.
*/
// 这里会调用blockManager的unrollSafely()方法,尝试将数据写入内存
// 如果unrollSafely()方法判断数据可以写入内存,那么就将数据写入内存
// 如果unrollSafely()方法判断某些数据无法写入内存,那么只能写入磁盘文件
blockManager.memoryStore.unrollSafely(key, values, updatedBlocks) match {
case Left(arr) =>
// We have successfully unrolled the entire partition, so cache it in memory
updatedBlocks ++=
blockManager.putArray(key, arr, level, tellMaster = true, effectiveStorageLevel)
arr.iterator.asInstanceOf[Iterator[T]]
case Right(it) =>
// There is not enough space to cache this partition in memory
val returnValues = it.asInstanceOf[Iterator[T]]
// 如果有些数据实在无法写入内存,那么就判断,数据是否有磁盘级别
// 如果有的话,那么就使用磁盘级别,将数据写入磁盘文件
if (putLevel.useDisk) {
logWarning(s"Persisting partition $key to disk instead.")
val diskOnlyLevel = StorageLevel(useDisk = true, useMemory = false,
useOffHeap = false, deserialized = false, putLevel.replication)
putInBlockManager[T](key, returnValues, level, updatedBlocks, Some(diskOnlyLevel))
} else {
returnValues
}
}
}
} ###org.apache.spark.storage/MemoryStore.scala def unrollSafely(
blockId: BlockId,
values: Iterator[Any],
droppedBlocks: ArrayBuffer[(BlockId, BlockStatus)])
: Either[Array[Any], Iterator[Any]] = { // Number of elements unrolled so far
var elementsUnrolled = 0
// Whether there is still enough memory for us to continue unrolling this block
var keepUnrolling = true
// Initial per-thread memory to request for unrolling blocks (bytes). Exposed for testing.
val initialMemoryThreshold = unrollMemoryThreshold
// How often to check whether we need to request more memory
val memoryCheckPeriod = 16
// Memory currently reserved by this thread for this particular unrolling operation
var memoryThreshold = initialMemoryThreshold
// Memory to request as a multiple of current vector size
val memoryGrowthFactor = 1.5
// Previous unroll memory held by this thread, for releasing later (only at the very end)
val previousMemoryReserved = currentUnrollMemoryForThisThread
// Underlying vector for unrolling the block
var vector = new SizeTrackingVector[Any] // Request enough memory to begin unrolling
keepUnrolling = reserveUnrollMemoryForThisThread(initialMemoryThreshold) if (!keepUnrolling) {
logWarning(s"Failed to reserve initial memory threshold of " +
s"${Utils.bytesToString(initialMemoryThreshold)} for computing block $blockId in memory.")
} // Unroll this block safely, checking whether we have exceeded our threshold periodically
try {
while (values.hasNext && keepUnrolling) {
vector += values.next()
if (elementsUnrolled % memoryCheckPeriod == 0) {
// If our vector's size has exceeded the threshold, request more memory
val currentSize = vector.estimateSize()
if (currentSize >= memoryThreshold) {
val amountToRequest = (currentSize * memoryGrowthFactor - memoryThreshold).toLong
// Hold the accounting lock, in case another thread concurrently puts a block that
// takes up the unrolling space we just ensured here
accountingLock.synchronized {
if (!reserveUnrollMemoryForThisThread(amountToRequest)) {
// If the first request is not granted, try again after ensuring free space
// If there is still not enough space, give up and drop the partition
val spaceToEnsure = maxUnrollMemory - currentUnrollMemory
// 反复循环,判断,只要还有数据没有写入内存,而且可以继续尝试往内存中写
// 那么就判断,如果内存大小够不够存放数据,调用ensureFreeSpace()方法,尝试清空一些内存空间
if (spaceToEnsure > 0) {
val result = ensureFreeSpace(blockId, spaceToEnsure)
droppedBlocks ++= result.droppedBlocks
}
keepUnrolling = reserveUnrollMemoryForThisThread(amountToRequest)
}
}
// New threshold is currentSize * memoryGrowthFactor
memoryThreshold += amountToRequest
}
}
elementsUnrolled += 1
} if (keepUnrolling) {
// We successfully unrolled the entirety of this block
Left(vector.toArray)
} else {
// We ran out of space while unrolling the values for this block
logUnrollFailureMessage(blockId, vector.estimateSize())
Right(vector.iterator ++ values)
} } finally {
// If we return an array, the values returned do not depend on the underlying vector and
// we can immediately free up space for other threads. Otherwise, if we return an iterator,
// we release the memory claimed by this thread later on when the task finishes.
if (keepUnrolling) {
val amountToRelease = currentUnrollMemoryForThisThread - previousMemoryReserved
releaseUnrollMemoryForThisThread(amountToRelease)
}
}
}

23、CacheManager原理剖析与源码分析的更多相关文章

  1. 65、Spark Streaming:数据接收原理剖析与源码分析

    一.数据接收原理 二.源码分析 入口包org.apache.spark.streaming.receiver下ReceiverSupervisorImpl类的onStart()方法 ### overr ...

  2. 66、Spark Streaming:数据处理原理剖析与源码分析(block与batch关系透彻解析)

    一.数据处理原理剖析 每隔我们设置的batch interval 的time,就去找ReceiverTracker,将其中的,从上次划分batch的时间,到目前为止的这个batch interval ...

  3. 20、Task原理剖析与源码分析

    一.Task原理 1.图解 二.源码分析 1. ###org.apache.spark.executor/Executor.scala /** * 从TaskRunner开始,来看Task的运行的工作 ...

  4. 18、TaskScheduler原理剖析与源码分析

    一.源码分析 ###入口 ###org.apache.spark.scheduler/DAGScheduler.scala // 最后,针对stage的task,创建TaskSet对象,调用taskS ...

  5. 64、Spark Streaming:StreamingContext初始化与Receiver启动原理剖析与源码分析

    一.StreamingContext源码分析 ###入口 org.apache.spark.streaming/StreamingContext.scala /** * 在创建和完成StreamCon ...

  6. 22、BlockManager原理剖析与源码分析

    一.原理 1.图解 Driver上,有BlockManagerMaster,它的功能,就是负责对各个节点上的BlockManager内部管理的数据的元数据进行维护, 比如Block的增删改等操作,都会 ...

  7. 21、Shuffle原理剖析与源码分析

    一.普通shuffle原理 1.图解 假设有一个节点上面运行了4个 ShuffleMapTask,然后这个节点上只有2个 cpu core.假如有另外一台节点,上面也运行了4个ResultTask,现 ...

  8. 19、Executor原理剖析与源码分析

    一.原理图解 二.源码分析 1.Executor注册机制 worker中为Application启动的executor,实际上是启动了这个CoarseGrainedExecutorBackend进程: ...

  9. 16、job触发流程原理剖析与源码分析

    一.以Wordcount为例来分析 1.Wordcount val lines = sc.textFile() val words = lines.flatMap(line => line.sp ...

随机推荐

  1. C#学习笔记------参数

    一.形参 形参是本地变量,它声明在方法的参数列表中,而不是方法体中.

  2. C#混音同时录制采集声卡和麦克风话筒

    在项目中,我们可能需要同时录制声卡的声音和麦克风的声音,比如直播间,在线教学.那么如何实现呢?当然是采用SharpCapture!下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第一步: ...

  3. power shell命令添加SharePoint用户组与用户(用户为域用户)

    查看SharePoint用户组 Get-PnPGroup 查看某一用户组 Get-PnPGroup -Identity "用户组名" 查看某一用户组下的所有成员 Get-PnPGr ...

  4. 混编用到 C++中数组和vector 复习下大学课本

    本文基于邓俊辉编著<数据结构(C++语言版)(第3版)>.<C++ Primer(第5版)>以及网上的相关博文而写,博主水平有限,若有不妥处,欢迎指出. 一.数组 C++中数组 ...

  5. 【开发笔记】- Linux命令大全

    系统信息  arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 - (SMBIOS ...

  6. mysql 存储过程、视图---创建、调用、删除

    之前一直用的是Sql Server数据库,最近偶然机会接触到mysql.这里总结了关于mysql 存储过程.视图的“创建.调用.删除”示例 ============================== ...

  7. SIM800A 建立网络

    SIM800A是一款两频GSM/GPRS模块,为SMT封装.其性能稳定,外观小巧,性价比高 可以低功耗实现语音.SMS和数据信息的传输 数据传输 GPRS class 12:最大85.6 kbps(下 ...

  8. java web编程 servlet2

    一般在开发的过程中主要用一个doGet和doPost方法, http就是超文本传输协议,这是java API对servlet的描述 : 一般我们调用的方法细则如下 : service一分为二reque ...

  9. 【hive】centos7下apache-hive-3.1.2-bin的安装测试

    前言:安装hive还是遇见些问题,但还好都解决了,比当初安装配置hadoop-3.2.0容易点...... 正文: 1.下载并安装hive:tar -zxvf apache-hive-3.1.2-bi ...

  10. 使用Cloudera Manager部署oozie

    使用Cloudera Manager部署oozie 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 1>.进入CM服务安装向导 2>.选择要添加的oozie服务 3> ...