LOJ129 Lyndon 分解
Lyndon 分解

样例
样例输入 1
ababa
样例输出 1
2 4 5
样例输入 2
bbababaabaaabaaaab
样例输出 2
1 2 4 6 9 13 18
样例输入 3
azAZ0129
样例输出 3
2 4 8
数据范围与提示
\(1\le |s| \le 2^{20}\)
OZY的题解
冷门东西,但是今天考到了,做个记录。
记号
\(s[l : r]\) 表示字符串\(s\) 从第\(l\) 个字符到第\(r\) 个字符的子串(从\(1\) 开始标号),\(|s|\) 表示\(s\) 的长度。
当\(l = 1\) 时\(s[l : r]\) 简写为\(s[: r]\) ,表示\(s\) 的一个前缀。当\(r = |s|\) 时\(s[l : r]\) 简写为\(s[l :]\) ,表示\(s\) 的一个后缀。
\(st, s +t\) 表示两个字符串\(st\) 的拼接,\(s^k\) 表示\(k\) 个\(s\) 拼起来,特别地,\(s^{\infty}\) 表示\(s\) 的无限循环。
定义
Lyndon 串:如果一个串\(s\) 满足\(s = \min\{s[i :]|1 \le i \le |s|\}\) 那么我们称串\(s\) 为Lyndon 串。定义字符串的大小关系就是字典序的大小关系
性质
当\(u,v\)均为Lyndon Words,且\(u<v\),那么\(uv\)也是一个Lyndon Words。
证明还是比较显然的,这里就不证了
Lyndon 划分
对于一个字符串\(s\),如果一个划分将它分成若干个串\(s=p_1+p_2+p_3+\dots+p_n\),使得每个\(p\)都是Lyndon Words,且\(p_i\ge p_{i+1}\),则这个划分是Lyndon 划分。
可以发现,一个字符串,一定存在一种Lyndon 划分,证明可以用构造法来证明。
一开始先所有\(p\)设为单个字母。显然,这是满足第一个条件的,只需要再满足递减的关系就可以了。
可以发现若\(p_i<p_{i+1}\),它们合起来也是一个Lyndon Words。
并且可以发现,对于一个串,他的Lyndon 划分是唯一的。
算法
目的是求出\(r[i]\),表示第\(i\)个字符所属Lyndon Words的右端点的下一个位置。
就是维护类似单调栈的东西就可以了。单调栈内维护的是属于同一Lyndon Words的节点,换句话说如果不满足字典序的单调递增,就要清空。发现这就是维护定义……很显然啊。
复杂度瓶颈在于比较后缀大小,用后缀树(DC3后缀数组+笛卡尔树)和±1RMQ即可\(O(n)\)。这里只给出不能AC的hash做法,\(O(n\log n)\)。
当然这题还有\(O(n)\)的Duval算法,但是我觉得没必要学。
#include<bits/stdc++.h>
#define co const
#define il inline
using namespace std;
typedef unsigned long long ULL;
co int N=(1<<20)+10;
co ULL base=131;
char str[N];int n;
ULL pw[N],hs[N];
il ULL calc(int l,int r){
return hs[r]-hs[l-1]*pw[r-l+1];
}
int lcp(int x,int y){ // str[x:],str[y:]
int l=0,r=n-max(x,y)+1;
while(l<r){
int mid=(l+r+1)>>1;
if(calc(x,x+mid-1)==calc(y,y+mid-1)) l=mid;
else r=mid-1;
}
return l;
}
il bool cmp(int x,int y){ // str[x:]<str[y:]
int len=lcp(x,y);
if(len==n-max(x,y)+1) return x>y; // partition by >=
return str[x+len]<str[y+len];
}
int r[N],st[N],top;
int main(){
scanf("%s",str+1),n=strlen(str+1);
pw[0]=1;
for(int i=1;i<=n;++i){
pw[i]=pw[i-1]*base;
hs[i]=hs[i-1]*base+str[i];
}
for(int i=1;i<=n;++i){
while(top&&cmp(i,st[top])) r[st[top--]]=i;
st[++top]=i;
}
while(top) r[st[top--]]=n+1;
for(int i=1;i<=n;i=r[i]) printf("%d ",r[i]-1);
return 0;
}
LOJ129 Lyndon 分解的更多相关文章
- HDU - 6761 Minimum Index (字符串,Lyndon分解)
Minimum Index 题意 求字符串所有前缀的所有后缀表示中字典序最小的位置集合,最终转换为1112进制表示.比如aab,有三个前缀分别为a,aa,aab.其中a的后缀只有一个a,位置下标1:a ...
- 知识点简单总结——Lyndon分解
知识点简单总结--Lyndon分解 Lyndon串 定义:一个字符串的最小后缀就是整个串本身. 等效理解:这个串为其所有循环表示中最小的. Lyndon分解 定义:将字符串分割为 $ s_{1} s_ ...
- Lyndon 相关的炫酷字符串科技
浅谈从 Lyndon Words 到 Three Squares Lemma By zghtyarecrenj 本文包括:Lyndon Words & Significant Suffixes ...
- Lyndon Word学习笔记
Lyndon Word 定义:对于字符串\(s\),若\(s\)的最小后缀为其本身,那么称\(s\)为Lyndon串 等价性:\(s\)为Lyndon串等价于\(s\)本身是其循环移位中最小的一个 性 ...
- Lyndon words学习笔记
Lyndon words 定义: 对于一个字符串\(S\),若\(S\)的最小后缀是其本身,则\(S\)为一个\(lyndon\)串; 记为\(S\in L\); 即: \[S \in L \begi ...
- Lyndon Word相关
Lyndon Word 定义 对于字符串 \(S\),若 \(S\) 的最小后缀为其本身,那么称 \(S\) 为 \(\text{Lyndon}\) 串(\(\text{Lyndon Word}\)) ...
- Lydon 分解与最小表示法
我们定义一个串是 \(\text{Lyndon}\) 串,当且仅当这个串的最小后缀就是这个串本身. 该命题等价于这个串是它的所有循环表示中字典序最小的. 引理 1:如果 \(u\) 和 \(v\) 都 ...
- ZROI 暑期高端峰会 A班 Day3 字符串
FBI Warning:本文含有大量人类的本质之一 后缀树 反正后缀树就是反串的后缀自动机的 Parent 树,就不管了. 然而 SAM 也忘了 好的假装自己会吧--dls 后缀自动机 大概记得,不管 ...
- 2019暑期金华集训 Day3 字符串
自闭集训 Day3 字符串 SAM 考虑后缀树. SAM的parent树是反串的后缀树,所以后面加一个字符的时候相当于往串前面加一个字符,恰好多出了一个后缀. 于是可以以此来理解SAM. 每一条路径对 ...
随机推荐
- react-redux源码学习
React-redux 源码学习 version 7.0.3 目录 Provider connect mapStateToProps mapDispatchToProps mergeProps opt ...
- python tkinter中的事件绑定
一个Tkinter主要跑在mainloop进程里.Events可能来自多个地方,比如按键,鼠标,或是系统事件. Tkinter提供了丰富的方法来处理这些事件.对于每一个控件Widget,你都可以为其绑 ...
- springboot2 配置 https
package cn.xiaojf.aibus.configure; import org.apache.catalina.Context; import org.apache.catalina.co ...
- typeof与instanceof运算符
typeof运算符用来判断某个变量的数据类型.typeof()返回值类型有如下几种: 1.number :数值类型 2.string :字符串类型 3.boolean :布尔型 4.function: ...
- JZOJ
题目: 三类动物A.B.C,A吃B,B吃C,C吃A.给出K句话来描述N个动物(各属于A.B.C三类之一)之间的关系,格式及意义如下:1 X Y:表示X与Y是同类: 2 X Y:表示X吃Y.K句话中有真 ...
- 神奇的print
一:多看看 1. #大小写转换 ,有大写的 全转化为大写 s = 'fds Kkg' print(s.swapcase()) #下划线等各种插入 s = 'fdsfkg' print('_'.join ...
- 【LeetCode】 #9:回文数 C语言
目录 题目 思路 初步想法 进一步想法 最后想法 总结 最近打算练习写代码的能力,所以从简单题开始做. 大部分还是用C语言来解决. @(解法) 题目 判断一个整数是否是回文数.回文数是指正序(从左向右 ...
- Java JDK1.8源码学习之路 1 Object
写在最前 对于一个合格的后端程序员来说,现行的流行框架早已经能胜任基本的企业开发,Springboot 任何的框架都把重复的工作更佳简单/优化的解决掉,但是完全陷入在这样的温水里面, 好比温水煮青蛙, ...
- YII 的SPA 写法
'use strict'; var findToolbar = function () { return document.querySelector('#yii-debug-toolbar'); } ...
- Mycat分布式数据库架构解决方案--schema.xml详解
echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.--这才是真正的堪称强大!!! 该文件 ...