LOJ129 Lyndon 分解
Lyndon 分解
样例
样例输入 1
ababa
样例输出 1
2 4 5
样例输入 2
bbababaabaaabaaaab
样例输出 2
1 2 4 6 9 13 18
样例输入 3
azAZ0129
样例输出 3
2 4 8
数据范围与提示
\(1\le |s| \le 2^{20}\)
OZY的题解
冷门东西,但是今天考到了,做个记录。
记号
\(s[l : r]\) 表示字符串\(s\) 从第\(l\) 个字符到第\(r\) 个字符的子串(从\(1\) 开始标号),\(|s|\) 表示\(s\) 的长度。
当\(l = 1\) 时\(s[l : r]\) 简写为\(s[: r]\) ,表示\(s\) 的一个前缀。当\(r = |s|\) 时\(s[l : r]\) 简写为\(s[l :]\) ,表示\(s\) 的一个后缀。
\(st, s +t\) 表示两个字符串\(st\) 的拼接,\(s^k\) 表示\(k\) 个\(s\) 拼起来,特别地,\(s^{\infty}\) 表示\(s\) 的无限循环。
定义
Lyndon 串:如果一个串\(s\) 满足\(s = \min\{s[i :]|1 \le i \le |s|\}\) 那么我们称串\(s\) 为Lyndon 串。定义字符串的大小关系就是字典序的大小关系
性质
当\(u,v\)均为Lyndon Words,且\(u<v\),那么\(uv\)也是一个Lyndon Words。
证明还是比较显然的,这里就不证了
Lyndon 划分
对于一个字符串\(s\),如果一个划分将它分成若干个串\(s=p_1+p_2+p_3+\dots+p_n\),使得每个\(p\)都是Lyndon Words,且\(p_i\ge p_{i+1}\),则这个划分是Lyndon 划分。
可以发现,一个字符串,一定存在一种Lyndon 划分,证明可以用构造法来证明。
一开始先所有\(p\)设为单个字母。显然,这是满足第一个条件的,只需要再满足递减的关系就可以了。
可以发现若\(p_i<p_{i+1}\),它们合起来也是一个Lyndon Words。
并且可以发现,对于一个串,他的Lyndon 划分是唯一的。
算法
目的是求出\(r[i]\),表示第\(i\)个字符所属Lyndon Words的右端点的下一个位置。
就是维护类似单调栈的东西就可以了。单调栈内维护的是属于同一Lyndon Words的节点,换句话说如果不满足字典序的单调递增,就要清空。发现这就是维护定义……很显然啊。
复杂度瓶颈在于比较后缀大小,用后缀树(DC3后缀数组+笛卡尔树)和±1RMQ即可\(O(n)\)。这里只给出不能AC的hash做法,\(O(n\log n)\)。
当然这题还有\(O(n)\)的Duval算法,但是我觉得没必要学。
#include<bits/stdc++.h>
#define co const
#define il inline
using namespace std;
typedef unsigned long long ULL;
co int N=(1<<20)+10;
co ULL base=131;
char str[N];int n;
ULL pw[N],hs[N];
il ULL calc(int l,int r){
return hs[r]-hs[l-1]*pw[r-l+1];
}
int lcp(int x,int y){ // str[x:],str[y:]
int l=0,r=n-max(x,y)+1;
while(l<r){
int mid=(l+r+1)>>1;
if(calc(x,x+mid-1)==calc(y,y+mid-1)) l=mid;
else r=mid-1;
}
return l;
}
il bool cmp(int x,int y){ // str[x:]<str[y:]
int len=lcp(x,y);
if(len==n-max(x,y)+1) return x>y; // partition by >=
return str[x+len]<str[y+len];
}
int r[N],st[N],top;
int main(){
scanf("%s",str+1),n=strlen(str+1);
pw[0]=1;
for(int i=1;i<=n;++i){
pw[i]=pw[i-1]*base;
hs[i]=hs[i-1]*base+str[i];
}
for(int i=1;i<=n;++i){
while(top&&cmp(i,st[top])) r[st[top--]]=i;
st[++top]=i;
}
while(top) r[st[top--]]=n+1;
for(int i=1;i<=n;i=r[i]) printf("%d ",r[i]-1);
return 0;
}
LOJ129 Lyndon 分解的更多相关文章
- HDU - 6761 Minimum Index (字符串,Lyndon分解)
Minimum Index 题意 求字符串所有前缀的所有后缀表示中字典序最小的位置集合,最终转换为1112进制表示.比如aab,有三个前缀分别为a,aa,aab.其中a的后缀只有一个a,位置下标1:a ...
- 知识点简单总结——Lyndon分解
知识点简单总结--Lyndon分解 Lyndon串 定义:一个字符串的最小后缀就是整个串本身. 等效理解:这个串为其所有循环表示中最小的. Lyndon分解 定义:将字符串分割为 $ s_{1} s_ ...
- Lyndon 相关的炫酷字符串科技
浅谈从 Lyndon Words 到 Three Squares Lemma By zghtyarecrenj 本文包括:Lyndon Words & Significant Suffixes ...
- Lyndon Word学习笔记
Lyndon Word 定义:对于字符串\(s\),若\(s\)的最小后缀为其本身,那么称\(s\)为Lyndon串 等价性:\(s\)为Lyndon串等价于\(s\)本身是其循环移位中最小的一个 性 ...
- Lyndon words学习笔记
Lyndon words 定义: 对于一个字符串\(S\),若\(S\)的最小后缀是其本身,则\(S\)为一个\(lyndon\)串; 记为\(S\in L\); 即: \[S \in L \begi ...
- Lyndon Word相关
Lyndon Word 定义 对于字符串 \(S\),若 \(S\) 的最小后缀为其本身,那么称 \(S\) 为 \(\text{Lyndon}\) 串(\(\text{Lyndon Word}\)) ...
- Lydon 分解与最小表示法
我们定义一个串是 \(\text{Lyndon}\) 串,当且仅当这个串的最小后缀就是这个串本身. 该命题等价于这个串是它的所有循环表示中字典序最小的. 引理 1:如果 \(u\) 和 \(v\) 都 ...
- ZROI 暑期高端峰会 A班 Day3 字符串
FBI Warning:本文含有大量人类的本质之一 后缀树 反正后缀树就是反串的后缀自动机的 Parent 树,就不管了. 然而 SAM 也忘了 好的假装自己会吧--dls 后缀自动机 大概记得,不管 ...
- 2019暑期金华集训 Day3 字符串
自闭集训 Day3 字符串 SAM 考虑后缀树. SAM的parent树是反串的后缀树,所以后面加一个字符的时候相当于往串前面加一个字符,恰好多出了一个后缀. 于是可以以此来理解SAM. 每一条路径对 ...
随机推荐
- ArrayPool数组池、Span<T>结构
数组(ArrayPool数组池.Span<T>结构) 目录 前言 简单的数组.多维数组.锯齿数组 Array类 ArrayPool数组池 Span Span介绍 Span切片 使用Span ...
- 问题三:Appium 的 UIAutomator2 模式下使用 sendKeys 出现错误
在Appium默认的模式下,可以对TextFiled控件进行sendKeys操作: 设置capabilities.setCapability("automationName",&q ...
- 整理通常的SQL SERVER优化流程
1.SQL脚本或存储过程,跟踪存储过程的执行时长和reads,不正常的情况下,表明语句.存储过程有优化空间,通常是未加索引,或者索引的字段升降序进行调用: A:脚本是否需要新增或复用现有索引: B:脚 ...
- LeetCode 151. 翻转字符串里的单词(Reverse Words in a String)
151. 翻转字符串里的单词 151. Reverse Words in a String
- Mysql中MVCC的使用及原理详解
准备 测试环境:Mysql 5.7.20-log 数据库默认隔离级别:RR(Repeatable Read,可重复读),MVCC主要适用于Mysql的RC,RR隔离级别 创建一张存储引擎为test ...
- Java开发笔记(一百一十八)AWT按钮
前面介绍了如何通过AWT显示程序的窗口界面,那么要怎样在该窗口上面添加丰富多样的控件呢?注意Frame类是个窗口工具,它由窗楣(标题栏)与窗体(窗口主界面)两部分组成,故而Frame类只对整个窗口统筹 ...
- python基础 — Queue 队列
queue介绍 queue是python中的标准库,俗称队列. 在python中,多个线程之间的数据是共享的,多个线程进行数据交换的时候,不能够保证数据的安全性和一致性,所以当多个线程需要进行数据交换 ...
- 在bat批处理中简单的延时方法
使用for命令: 延时1s左右的方法: @echo off echo %time% ,,) do echo %%i>nul echo %time% pause %time%是用来显示延时时间,实 ...
- redis数据结构和常用命令
redis常用数据结构 String 最简单的K_V,value可以是数字或者字符串,使用场景:微博数.普通计数,命令:get set incr(加1) decr(减1) mget(获取多个值),se ...
- iOS - 适配iOS 11
http://www.10tiao.com/html/330/201707/2653579210/1.html 存档 导语:iOS 11 为整个生态系统的 UI 元素带来了一种更加大胆.动态的新风格. ...