Winograd Convolution 推导 - 从1D到2D
Winograd Convolution 推导 - 从1D到2D
1D Winograd 卷积
1D Winograd算法已经有很多文章讨论了,讨论得都比较清楚,这里就不再赘述,仅列出结论。
输入:四维信号
![]()
卷积核: 三维向量![]()
输出: 二维信号![]()
则可表示为:
![]()
其中:
2D Winograd卷积
2D Winograd可以由1D Winograd外推得到,因此为解决2D Winograd问题,首先要重温1D 卷积解决的问题。在此复述一遍:
假设一个卷积核尺寸为3的一维卷积,假设每次我们输出2个卷积点,则我们形式化此问题:F(2, 3)。
因为输出为2,卷积核大小为3,对应的输入点数应该为4,则此问题表述为:
输入:四维信号
![]()
卷积核: 三维向量![]()
因此,此卷积的矩阵乘形式应为:
请记住这个形式是Winograd算法解决的问题,后续2D算法将化归为这个问题。
下面我们来定义2D 卷积问题,将1D卷积扩展一维:
假设一个卷积核尺寸为3x3的二维卷积,假设每次我们输出2x2个卷积点,则我们形式化此问题:F(2x2, 3x3)。
因为输出为2x2,卷积核大小为3x3,对应的输入点数应该为4x4,则此问题表述为:
输入:
卷积核:
因此,此卷积的矩阵乘形式应为:
从这个式子里,我们可以看到1D卷积的影子,这个影子在我们对矩阵作了分块后会更加明显。
再明显一点,我们写成分块矩阵乘的形式:
至此,我们对2D卷积推导出了跟1D形式一致的公式,只不过1D中的标量在2D中变成了小矩阵或者向量。
实操粉
对实操粉而言,到这个形式为止,已经可以写代码了。
由1D Winograd可知,我们可以将该式改写为Winograd形式, 如下:
其中:
注意,这四个M的计算又可以用一维的F(2, 3) Winograd来做,因此2D Winograd是个嵌套(nested)的算法。
理论粉
对一个有追求的理论粉来说,只是得到可以写程序的递归表达肯定是不完美的,他们还是希望有一个最终的解析表达的。其实也很简单,我们把上面的式子规整规整,使得输出成为一个标准的2x2矩阵,有:
可以写为:
依1D Winograd公式, 并结合各M的公式,有下式。
注意到像这些都是2维列向量,hadamard product和concat可以交换而不影响结果,因此:
至此证得。
参考文献
Going beyond Full Utilization: The Inside Scoop on Nervana’s Winograd Kernels
卷积神经网络中的Winograd快速卷积算法 注:本文关于2D Winograd的公式推导是错误的。
Winograd Convolution 推导 - 从1D到2D的更多相关文章
- 卷积神经网络中的Winograd快速卷积算法
目录 写在前面 问题定义 一个例子 F(2, 3) 1D winograd 1D to 2D,F(2, 3) to F(2x2, 3x3) 卷积神经网络中的Winograd 总结 参考 博客:blog ...
- AES128加密-S盒和逆S盒构造推导及代码实现
文档引用了<密码编码学与网络安全--原理和实践>里边的推导过程,如有不妥,请与我联系修改. 文档<FIPS 197>高级加密标准AES,里边有个S盒构造,涉及到了数论和有限域的 ...
- 1D Blending
[1D Blending] BlendTree有类型之分,分为1D.2D.本文记录1D. 1D Blending blends the child motions according to a sin ...
- Notes on Convolutional Neural Networks
这是Jake Bouvrie在2006年写的关于CNN的训练原理,虽然文献老了点,不过对理解经典CNN的训练过程还是很有帮助的.该作者是剑桥的研究认知科学的.翻译如有不对之处,还望告知,我好及时改正, ...
- NumPy的详细教程
原文 http://blog.csdn.net/lsjseu/article/details/20359201 主题 NumPy 先决条件 在阅读这个教程之前,你多少需要知道点python.如果你想 ...
- KCF目标跟踪方法分析与总结
KCF目标跟踪方法分析与总结 correlation filter Kernelized correlation filter tracking 读"J. F. Henriques, R. ...
- TensorFlow框架(4)之CNN卷积神经网络
1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对 ...
- 论文阅读笔记十九:PIXEL DECONVOLUTIONAL NETWORKS(CVPR2017)
论文源址:https://arxiv.org/abs/1705.06820 tensorflow(github): https://github.com/HongyangGao/PixelDCN 基于 ...
- CNN 文本分类
谈到文本分类,就不得不谈谈CNN(Convolutional Neural Networks).这个经典的结构在文本分类中取得了不俗的结果,而运用在这里的卷积可以分为1d .2d甚至是3d的. 下面 ...
随机推荐
- SpringBoot——经典的Hello World【二】
前言 来创建个hello world 呗 步骤 首先肯定是要打开我们的IDEA来创建一个Maven的项目哈 创建项目 1. File->New->Project 2.Maven->J ...
- sqoop2相关实例:hdfs和mysql互相导入(转)
原文地址:http://blog.csdn.net/dream_an/article/details/74936066 超详细讲解Sqoop2应用与实践 2017年07月10日 20:06:57 阅读 ...
- idea 将java导出为可执行jar及导入jar依赖
使用maven可以很好的帮助我们进行依赖的管理,也可以使用maven的jar包打包插件构建出可运行的jar.那针对不是用maven进行管理的普通java项目,可以通过以下方式导出可执行的jar包以及导 ...
- Json断言
Additionally assert value:添加验证的值,只有勾选了此复选框,才可以在Expected Value中设置期望的值. Match as regular expression:匹配 ...
- 文件夹上传组件webupload插件
javaweb上传文件 上传文件的jsp中的部分 上传文件同样可以使用form表单向后端发请求,也可以使用 ajax向后端发请求 1.通过form表单向后端发送请求 <form id=" ...
- cf1189解题报告
cf1189div2解题报告 codeforces A 答案要不是一串要不就是去掉最后一个字母的两串 #include <bits/stdc++.h> #define ll long lo ...
- bootstrap 多级联动下拉框
<!DOCTYPE HTML> <html lang="zh-CN"> <head> <meta charset="UTF-8& ...
- 安装和启动ElasticSearch服务遇到的几个问题
首先安装和启动服务的教程是参考文章:ES入门之一 安装ElasticSearch 然后在最后的启动es服务时遇到了几个小问题,因此在这里记录一下. 因为我对linux并不是很熟悉,因此文中如果有说错的 ...
- 分析WordPress数据表之用户表(功能篇)
数据表分析 wp_users wp_usermeta 用户系统就是靠着这两张表来实现的. 具体事例分析 添加用户 添加成功后,我们会分别在wp_users及wp_usermeta表中分别看到test0 ...
- cloneable以及深拷贝和浅拷贝
Objec类有11个方法,有两个protected的方法,其中一个为clone方法(另一个为finalize). 该方法的签名是: protected native Object clone() th ...