题目链接在这QvQ

"你要求出这个n维球体的球心坐标",这使我想到的解方程......

先假设n=2,这是一个二维平面。设圆心的坐标为\((x,y)\),有两个坐标\((a_1,b_1)\)和\((a_2,b_2)\),显然两个坐标的关系为:

\((x-a_1)^2+(y-b_1)^2=(x-a_2)^2+(y-b_2)^2\)

考虑如何化简上面的式子。

\((x-a_1)^2-(x-a_2)^2+(y-b_1)^2-(y-b_2)^2=0\)

根据完全平方公式:\((x-a_1)^2=x^2+a_1^2-2 \times x \times a_1\)

\((x-a_1)^2-(x-a_2)^2=x^2+a_1^2-2 \times x \times a_1-x^2-a_2^2+2 \times x \times a_2\)

\((x-a_1)^2-(x-a_2)^2=a_1^2-2 \times x \times a_1-a_2^2+2 \times x \times a_2\)

\((x-a_1)^2-(x-a_2)^2=a_1^2-a_2^2-2(a_1-a_2)x\)

同理,\((y-b_1)^2-(y-b_2)^2=b_1^2-b_2^2-2(b_1-b_2)y\)

整理后:\(a_1^2-a_2^2-2(a_1-a_2)x+b_1^2-b_2^2-2(b_1-b_2)y=0\)

移项后:\(a_1^2-a_2^2+b_1^2-b_2^2=2(a_1-a_2)x+2(b_1-b_2)y\)

这个式子最终为:\(2(a_1-a_2)x+2(b_1-b_2)y=a_1^2-a_2^2+b_1^2-b_2^2\)

由于 \(a_1^2-a_2^2+b_1^2-b_2^2\) 是已知的,我们将 \(a_1^2-a_2^2+b_1^2-b_2^2\) 设为\(Sum\).

\(2(a_1-a_2)\) 和 \(2(b_1-b_2)\)都是已知的项,分别设为 \(a\) 和 \(b\) .

所以它又变成了我们亲切的小学奥数之解方程:\(ax+by=Sum\)

对于二维的答案是 \((x,y)\) ,\(x\) 和 \(y\) 都可以通过高斯消元的模板来解出。

对于更高的维数,跟二维同理,只不过"元"多了几个而已。

所以就这样愉快的A掉了这道大水题。

#include<bits/stdc++.h>
#define ll long long
#define inf 0x3f3f3f3f
#define RI register int
using namespace std;
const int N=25;
const double eps=1e-8;
double v[N][N],f[N][N],s[N],del;
int n;
inline bool Gauss(){
for(RI k=1,i=1;i<=n;++i,k=i){
for(RI j=i+1;j<=n;++j)if(abs(f[j][i])>abs(f[k][i]))k=j;
if(fabs(del=f[k][i])<eps)return false;//不判就出BUG,不知道为啥
swap(f[i],f[k]);swap(s[i],s[k]);
for(RI j=i;j<=n;++j)f[i][j]/=del;s[i]/=del;
for(k=1;k<=n;++k)if(k!=i){
del=f[k][i];
for(RI j=i;j<=n;++j)f[k][j]-=f[i][j]*del;
s[k]-=s[i]*del;
}
}return true;
}
int main(){
scanf("%d",&n);
for(RI i=1;i<=n+1;++i)for(RI j=1;j<=n;++j)scanf("%lf",&v[i][j]);
for(RI i=1;i<=n;++i)
for(RI j=1;j<=n;++j){
s[i]+=(v[i][j]*v[i][j]-v[i+1][j]*v[i+1][j]);//求上面的 "Sum"
f[i][j]=2*(v[i][j]-v[i+1][j]);//求上面的 "a"、"b"等
}
Gauss();
for(RI i=1;i<n;++i)printf("%.3lf ",s[i]);//注意输出格式!
printf("%.3lf",s[n]);
return 0;
}

这题啥都好,就是输出格式有点制杖......请各位小心......

题解 洛谷P4035/BZOJ1013【[JSOI2008]球形空间产生器】的更多相关文章

  1. BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】

    BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...

  2. BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4846  Solved: 2525[Subm ...

  3. bzoj千题计划104:bzoj1013: [JSOI2008]球形空间产生器sphere

    http://www.lydsy.com/JudgeOnline/problem.php?id=1013 设球心(x1,x2,x3……) 已知点的坐标为t[i][j] 那么 对于每个i满足 Σ (t[ ...

  4. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  5. bzoj1013 [JSOI2008]球形空间产生器

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

  6. BZOJ1013: [JSOI2008]球形空间产生器sphere

    传送门 高斯消元练习. 模板: void Guass(){ int waited; up(i,1,N){ waited=i; up(j,i+1,N)if(fabs(M[j][i])>fabs(M ...

  7. BZOJ1013 [JSOI2008]球形空间产生器sphere[高消]

    数论进度开的好慢啊.我整天做的都是什么鬼题啊. 简单的高消题,用一个式子把另外$n$个有二次项和距离的式子全消掉就行了. #include<iostream> #include<cs ...

  8. 【bzoj1013】[JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4530  Solved: 2364[Subm ...

  9. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

随机推荐

  1. UVa 12718 Dromicpalin Substrings (暴力)

    题意:给定一个序列,问你它有多少上连续的子串,能够重排后是一个回文串. 析:直接暴力,n 比较小不会超时. 代码如下: #pragma comment(linker, "/STACK:102 ...

  2. ubuntu mysql5.6二进制安装

    200 ? "200px" : this.width)!important;} --> 介绍 以前一直使用centos今天需要对一台ubantu的系统安装mysql,虽然它也 ...

  3. 洛谷 P3732 [HAOI2017]供给侧改革【trie树】

    参考:http://blog.csdn.net/di4covery/article/details/73065684 我以为是后缀数组+某某数据结构,结果居然是01trie!!题解说"因为是 ...

  4. 解决Bad owner or permissions on .ssh/config 的问题

    在使用gei fetch 或者 sftp的时候,出现 Bad owner or permissions on .ssh/config的问题的解决办法 修改.ssh/config的权限: sudo ch ...

  5. Luogu P1134 阶乘问题 【数学/乱搞】 By cellur925

    输入输出格式 输入格式: 仅一行包含一个正整数 NN . 输出格式: 一个整数,表示最右边的非零位的值. 输入输出样例 输入样例#1: 12 输出样例#1: 6 说明 USACO Training S ...

  6. Java多线程学习---------超详细总结(java 多线程 同步 数据传递 )

    目录(?)[-] 一扩展javalangThread类 二实现javalangRunnable接口 三Thread和Runnable的区别 四线程状态转换 五线程调度 六常用函数说明 使用方式 为什么 ...

  7. C语言中Static和Const关键字的的作用 -- 转

    static作用:“改变生命周期” 或者 “改变作用域” 程序的局部变量存在于(堆栈)中,全局变量存在于(静态区 )中,动态申请数据存在于( 堆)中. 1.作用于变量: 用static声明局部变量-- ...

  8. 未来十年Python的前景会怎样?

    转自:一位非常优秀的Python倡导者 作者:alex链接:https://www.zhihu.com/question/22112542/answer/166053516来源:知乎著作权归作者所有. ...

  9. 转】R利剑NoSQL系列文章 之 Hive

    原博文出自于: http://blog.fens.me/category/%E6%95%B0%E6%8D%AE%E5%BA%93/page/3/ 感谢! Posted: Jul 27, 2013 Ta ...

  10. java之java.lang.UnsupportedClassVersionError:com/mysql/jdbc/Driver : Unsupported major.minor version 52.0

    问题解释:jdk版本和mysql驱动版本不兼容,比如:jdk1.7与mysql-connector-java-5.xxx兼容,但与mysql-connector-java-6.xxx及以上不兼容