题目链接在这QvQ

"你要求出这个n维球体的球心坐标",这使我想到的解方程......

先假设n=2,这是一个二维平面。设圆心的坐标为\((x,y)\),有两个坐标\((a_1,b_1)\)和\((a_2,b_2)\),显然两个坐标的关系为:

\((x-a_1)^2+(y-b_1)^2=(x-a_2)^2+(y-b_2)^2\)

考虑如何化简上面的式子。

\((x-a_1)^2-(x-a_2)^2+(y-b_1)^2-(y-b_2)^2=0\)

根据完全平方公式:\((x-a_1)^2=x^2+a_1^2-2 \times x \times a_1\)

\((x-a_1)^2-(x-a_2)^2=x^2+a_1^2-2 \times x \times a_1-x^2-a_2^2+2 \times x \times a_2\)

\((x-a_1)^2-(x-a_2)^2=a_1^2-2 \times x \times a_1-a_2^2+2 \times x \times a_2\)

\((x-a_1)^2-(x-a_2)^2=a_1^2-a_2^2-2(a_1-a_2)x\)

同理,\((y-b_1)^2-(y-b_2)^2=b_1^2-b_2^2-2(b_1-b_2)y\)

整理后:\(a_1^2-a_2^2-2(a_1-a_2)x+b_1^2-b_2^2-2(b_1-b_2)y=0\)

移项后:\(a_1^2-a_2^2+b_1^2-b_2^2=2(a_1-a_2)x+2(b_1-b_2)y\)

这个式子最终为:\(2(a_1-a_2)x+2(b_1-b_2)y=a_1^2-a_2^2+b_1^2-b_2^2\)

由于 \(a_1^2-a_2^2+b_1^2-b_2^2\) 是已知的,我们将 \(a_1^2-a_2^2+b_1^2-b_2^2\) 设为\(Sum\).

\(2(a_1-a_2)\) 和 \(2(b_1-b_2)\)都是已知的项,分别设为 \(a\) 和 \(b\) .

所以它又变成了我们亲切的小学奥数之解方程:\(ax+by=Sum\)

对于二维的答案是 \((x,y)\) ,\(x\) 和 \(y\) 都可以通过高斯消元的模板来解出。

对于更高的维数,跟二维同理,只不过"元"多了几个而已。

所以就这样愉快的A掉了这道大水题。

#include<bits/stdc++.h>
#define ll long long
#define inf 0x3f3f3f3f
#define RI register int
using namespace std;
const int N=25;
const double eps=1e-8;
double v[N][N],f[N][N],s[N],del;
int n;
inline bool Gauss(){
for(RI k=1,i=1;i<=n;++i,k=i){
for(RI j=i+1;j<=n;++j)if(abs(f[j][i])>abs(f[k][i]))k=j;
if(fabs(del=f[k][i])<eps)return false;//不判就出BUG,不知道为啥
swap(f[i],f[k]);swap(s[i],s[k]);
for(RI j=i;j<=n;++j)f[i][j]/=del;s[i]/=del;
for(k=1;k<=n;++k)if(k!=i){
del=f[k][i];
for(RI j=i;j<=n;++j)f[k][j]-=f[i][j]*del;
s[k]-=s[i]*del;
}
}return true;
}
int main(){
scanf("%d",&n);
for(RI i=1;i<=n+1;++i)for(RI j=1;j<=n;++j)scanf("%lf",&v[i][j]);
for(RI i=1;i<=n;++i)
for(RI j=1;j<=n;++j){
s[i]+=(v[i][j]*v[i][j]-v[i+1][j]*v[i+1][j]);//求上面的 "Sum"
f[i][j]=2*(v[i][j]-v[i+1][j]);//求上面的 "a"、"b"等
}
Gauss();
for(RI i=1;i<n;++i)printf("%.3lf ",s[i]);//注意输出格式!
printf("%.3lf",s[n]);
return 0;
}

这题啥都好,就是输出格式有点制杖......请各位小心......

题解 洛谷P4035/BZOJ1013【[JSOI2008]球形空间产生器】的更多相关文章

  1. BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】

    BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...

  2. BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4846  Solved: 2525[Subm ...

  3. bzoj千题计划104:bzoj1013: [JSOI2008]球形空间产生器sphere

    http://www.lydsy.com/JudgeOnline/problem.php?id=1013 设球心(x1,x2,x3……) 已知点的坐标为t[i][j] 那么 对于每个i满足 Σ (t[ ...

  4. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  5. bzoj1013 [JSOI2008]球形空间产生器

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

  6. BZOJ1013: [JSOI2008]球形空间产生器sphere

    传送门 高斯消元练习. 模板: void Guass(){ int waited; up(i,1,N){ waited=i; up(j,i+1,N)if(fabs(M[j][i])>fabs(M ...

  7. BZOJ1013 [JSOI2008]球形空间产生器sphere[高消]

    数论进度开的好慢啊.我整天做的都是什么鬼题啊. 简单的高消题,用一个式子把另外$n$个有二次项和距离的式子全消掉就行了. #include<iostream> #include<cs ...

  8. 【bzoj1013】[JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4530  Solved: 2364[Subm ...

  9. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

随机推荐

  1. redis info 参数说明

    原文: redis info 参数说明 redis 127.0.0.1:6381> info redis_version:2.4.16 # Redis 的版本redis_git_sha1:000 ...

  2. Html.PartialView(),html.Renderpartial,html.action.html.RenderAction 辅助方法

    Html.Partial(), 返回HTML字符串 .参数为部分视图 html.RenderPartial(),不返回返回HTML字符串 ,直接输出响应流.参数为部分视图 一般用于主视图中已经存在了这 ...

  3. Objective-C NSData/NSMutableData

    创建于完成: 2018/02/06 总览: http://www.cnblogs.com/lancgg/p/8404975.html  数据类   简介 处理比特列 Foundation/NSData ...

  4. Akka源码分析-CircuitBreaker(熔断器)

    熔断器,在很多技术栈中都会出现的一种技术.它是在分布式系统中提供一个稳定的阻止嵌套失败的机制. 该怎么理解呢?简单来说,在分布式环境中,如果某个计算节点出现问题,很容易出现失败的逆向传到或整个系统的雪 ...

  5. 码云 fatal: Authentication failed for

    最近push代码到码云时,push失败,提示fatal: Authentication failed for,解决方法就是: 在git命令行中输入 git config --system --unse ...

  6. (数论 欧拉筛法)51NOD 1181 质数中的质数(质数筛法)

    如果一个质数,在质数列表中的编号也是质数,那么就称之为质数中的质数.例如:3 5分别是排第2和第3的质数,所以他们是质数中的质数.现在给出一个数N,求>=N的最小的质数中的质数是多少(可以考虑用 ...

  7. A - Supercentral Point CodeForces - 165A

    One day Vasya painted a Cartesian coordinate system on a piece of paper and marked some set of point ...

  8. Windows API函数大全

    WindowsAPI函数大全(精心总结) 目录 1. API之网络函数... 1 2. API之消息函数... 1 3. API之文件处理函数... 2 4. API之打印函数... 5 5. API ...

  9. 题解报告:hdu 4907 Task schedule

    Problem Description 有一台机器,并且给你这台机器的工作表,工作表上有n个任务,机器在ti时间执行第i个任务,1秒即可完成1个任务.有m个询问,每个询问有一个数字q,表示如果在q时间 ...

  10. 题解报告:hdu 2059 龟兔赛跑

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2059 Problem Description 据说在很久很久以前,可怜的兔子经历了人生中最大的打击—— ...