题解 洛谷P4035/BZOJ1013【[JSOI2008]球形空间产生器】
题目链接在这QvQ
"你要求出这个n维球体的球心坐标",这使我想到的解方程......
先假设n=2,这是一个二维平面。设圆心的坐标为\((x,y)\),有两个坐标\((a_1,b_1)\)和\((a_2,b_2)\),显然两个坐标的关系为:
\((x-a_1)^2+(y-b_1)^2=(x-a_2)^2+(y-b_2)^2\)
考虑如何化简上面的式子。
\((x-a_1)^2-(x-a_2)^2+(y-b_1)^2-(y-b_2)^2=0\)
根据完全平方公式:\((x-a_1)^2=x^2+a_1^2-2 \times x \times a_1\)
\((x-a_1)^2-(x-a_2)^2=x^2+a_1^2-2 \times x \times a_1-x^2-a_2^2+2 \times x \times a_2\)
\((x-a_1)^2-(x-a_2)^2=a_1^2-2 \times x \times a_1-a_2^2+2 \times x \times a_2\)
\((x-a_1)^2-(x-a_2)^2=a_1^2-a_2^2-2(a_1-a_2)x\)
同理,\((y-b_1)^2-(y-b_2)^2=b_1^2-b_2^2-2(b_1-b_2)y\)
整理后:\(a_1^2-a_2^2-2(a_1-a_2)x+b_1^2-b_2^2-2(b_1-b_2)y=0\)
移项后:\(a_1^2-a_2^2+b_1^2-b_2^2=2(a_1-a_2)x+2(b_1-b_2)y\)
这个式子最终为:\(2(a_1-a_2)x+2(b_1-b_2)y=a_1^2-a_2^2+b_1^2-b_2^2\)
由于 \(a_1^2-a_2^2+b_1^2-b_2^2\) 是已知的,我们将 \(a_1^2-a_2^2+b_1^2-b_2^2\) 设为\(Sum\).
\(2(a_1-a_2)\) 和 \(2(b_1-b_2)\)都是已知的项,分别设为 \(a\) 和 \(b\) .
所以它又变成了我们亲切的小学奥数之解方程:\(ax+by=Sum\)
对于二维的答案是 \((x,y)\) ,\(x\) 和 \(y\) 都可以通过高斯消元的模板来解出。
对于更高的维数,跟二维同理,只不过"元"多了几个而已。
所以就这样愉快的A掉了这道大水题。
#include<bits/stdc++.h>
#define ll long long
#define inf 0x3f3f3f3f
#define RI register int
using namespace std;
const int N=25;
const double eps=1e-8;
double v[N][N],f[N][N],s[N],del;
int n;
inline bool Gauss(){
for(RI k=1,i=1;i<=n;++i,k=i){
for(RI j=i+1;j<=n;++j)if(abs(f[j][i])>abs(f[k][i]))k=j;
if(fabs(del=f[k][i])<eps)return false;//不判就出BUG,不知道为啥
swap(f[i],f[k]);swap(s[i],s[k]);
for(RI j=i;j<=n;++j)f[i][j]/=del;s[i]/=del;
for(k=1;k<=n;++k)if(k!=i){
del=f[k][i];
for(RI j=i;j<=n;++j)f[k][j]-=f[i][j]*del;
s[k]-=s[i]*del;
}
}return true;
}
int main(){
scanf("%d",&n);
for(RI i=1;i<=n+1;++i)for(RI j=1;j<=n;++j)scanf("%lf",&v[i][j]);
for(RI i=1;i<=n;++i)
for(RI j=1;j<=n;++j){
s[i]+=(v[i][j]*v[i][j]-v[i+1][j]*v[i+1][j]);//求上面的 "Sum"
f[i][j]=2*(v[i][j]-v[i+1][j]);//求上面的 "a"、"b"等
}
Gauss();
for(RI i=1;i<n;++i)printf("%.3lf ",s[i]);//注意输出格式!
printf("%.3lf",s[n]);
return 0;
}
这题啥都好,就是输出格式有点制杖......请各位小心......
题解 洛谷P4035/BZOJ1013【[JSOI2008]球形空间产生器】的更多相关文章
- BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】
BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...
- BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4846 Solved: 2525[Subm ...
- bzoj千题计划104:bzoj1013: [JSOI2008]球形空间产生器sphere
http://www.lydsy.com/JudgeOnline/problem.php?id=1013 设球心(x1,x2,x3……) 已知点的坐标为t[i][j] 那么 对于每个i满足 Σ (t[ ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- bzoj1013 [JSOI2008]球形空间产生器
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...
- BZOJ1013: [JSOI2008]球形空间产生器sphere
传送门 高斯消元练习. 模板: void Guass(){ int waited; up(i,1,N){ waited=i; up(j,i+1,N)if(fabs(M[j][i])>fabs(M ...
- BZOJ1013 [JSOI2008]球形空间产生器sphere[高消]
数论进度开的好慢啊.我整天做的都是什么鬼题啊. 简单的高消题,用一个式子把另外$n$个有二次项和距离的式子全消掉就行了. #include<iostream> #include<cs ...
- 【bzoj1013】[JSOI2008]球形空间产生器sphere
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4530 Solved: 2364[Subm ...
- BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元
1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...
随机推荐
- 5 分钟掌握 JS 实用窍门技巧,帮你快速撸码--- 删除数组尾部元素、E6对象解构、async/await、 操作平铺嵌套多维数组等
1. 删除数组尾部元素 一个简单方法就是改变数组的length值: const arr = [11, 22, 33, 44, 55, 66]; arr.length = 3; console.log( ...
- Luogu P2158 [SDOI2008]仪仗队【数学/欧拉函数】by cellur925
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...
- Vue的响应式原理
Vue的响应式原理 一.响应式的底层实现 1.Vue与MVVM Vue是一个 MVVM框架,其各层的对应关系如下 View层:在Vue中是绑定dom对象的HTML ViewModel层:在Vue中是实 ...
- 《Windows核心编程系列》十四谈谈默认堆和自定义堆
堆 前面我们说过堆非常适合分配大量的小型数据.使用堆可以让程序员专心解决手头的问题,而不必理会分配粒度和页面边界之类的事情.因此堆是管理链表和数的最佳方式.但是堆进行内存分配和释放时的速度比其他方式都 ...
- python包管理工具他们之间的关系
python包管理工具之间的关系 现在的python包管理工具有很多,非常混乱,必须理清他们之间的关系才能更好的使用python构建强大的包关系系统工具. 首先:python官方推荐的第三方库是PyP ...
- Normal equations 正规方程组
前面我们通过Gradient Descent的方法进行了线性回归,但是梯度下降有如下特点: (1)需要预先选定Learning rate: (2)需要多次iteration: (3)需要Feature ...
- ORACLE 如何查看存储过程的定义
ORACLE 如何查看存储过程的定义 相关的数据字典 USER_SOURCE 用户的存储过程.函数的源代码字典 DBA_SOURCE 整个系统所有用户的存储过程.函数的源代码字典 ALL_SOUR ...
- E. Comments dfs模拟
http://codeforces.com/contest/747/problem/E 首先,把字符串变成这个样子. hello,2,ok,0,bye,0,test,0,one,1,two,2,a,0 ...
- Oracle函数大全下载
Oracle函数大全下载 是一个压缩包,里面是一个chm格式的帮助文档,很实用.
- HttpWebRequest 以及WebRequest的使用
1.WebRequest的发送数据以及接收数据 class Program { static void Main(string[] args) { //创建一个实例并发送请求 HttpWebReque ...