本文转至http://www.cnblogs.com/kaituorensheng/p/4465768.html,在其基础上进行了一些小小改动。

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。
Pool可以提供指定数量的进程供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

例1:使用进程池

from multiprocessing import freeze_support,Pool
import time def Foo(i):
time.sleep(2)
print('___time---',time.ctime())
return i+100 def Bar(arg):
print('----exec done:',arg,time.ctime()) if __name__ == '__main__':
freeze_support()
pool = Pool(3) #线程池中的同时执行的进程数为3 for i in range(4):
pool.apply_async(func=Foo,args=(i,),callback=Bar) #线程池中的同时执行的进程数为3,当一个进程执行完毕后,如果还有新进程等待执行,则会将其添加进去
# pool.apply(func=Foo,args=(i,)) print('end')
pool.close()
pool.join()#调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束

执行结果:

end
___time--- Thu Jun 16 15:11:45 2016
----exec done: 100 Thu Jun 16 15:11:45 2016
___time--- Thu Jun 16 15:11:45 2016
----exec done: 101 Thu Jun 16 15:11:45 2016
___time--- Thu Jun 16 15:11:45 2016
----exec done: 102 Thu Jun 16 15:11:45 2016
___time--- Thu Jun 16 15:11:47 2016
----exec done: 103 Thu Jun 16 15:11:47 2016

函数解释

  • apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)
  • close()    关闭pool,使其不在接受新的任务。
  • terminate()    结束工作进程,不在处理未完成的任务。
  • join()    主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。

例2:使用进程池(阻塞)

from multiprocessing import freeze_support,Pool
import time def Foo(i):
time.sleep(2)
print('___time---',time.ctime())
return i+100 def Bar(arg):
print('----exec done:',arg,time.ctime()) if __name__ == '__main__':
freeze_support()
pool = Pool(3) #线程池中的同时执行的进程数为3 for i in range(4):
pool.apply(func=Foo,args=(i,)) print('end')
pool.close()
pool.join()#调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束

执行结果

___time--- Thu Jun 16 15:15:16 2016
___time--- Thu Jun 16 15:15:18 2016
___time--- Thu Jun 16 15:15:20 2016
___time--- Thu Jun 16 15:15:22 2016
end

例3:使用进程池,并关注结果

import multiprocessing
import time def func(msg):
print('hello :',msg,time.ctime())
time.sleep(2)
print('end',time.ctime())
return 'done' + msg if __name__=='__main__':
pool = multiprocessing.Pool(2)
result = []
for i in range(3):
msg = 'hello %s' %i
result.append(pool.apply_async(func=func,args=(msg,))) pool.close()
pool.join() for res in result:
print('***:',res.get()) print('AAAAAAAAll end--')

执行结果


hello : hello 0 Thu Jun 16 15:26:33 2016
hello : hello 1 Thu Jun 16 15:26:33 2016
end Thu Jun 16 15:26:35 2016
hello : hello 2 Thu Jun 16 15:26:35 2016
end Thu Jun 16 15:26:35 2016
end Thu Jun 16 15:26:37 2016
***: donehello 0
***: donehello 1
***: donehello 2
AAAAAAAAll end--

:get()函数得出每个返回结果的值

例4:使用多个进程池

import multiprocessing
import time,os,random def Lee():
print('\nRun task Lee--%s******ppid:%s'%(os.getpid(),os.getppid()),'~~~~',time.ctime())
start = time.time()
time.sleep(random.randrange(10))
end = time.time()
print('Task Lee,runs %0.2f seconds.'%(end-start),'~~~~',time.ctime()) def Marlon():
print("\nRun task Marlon-%s******ppid:%s"%(os.getpid(),os.getppid()),'~~~~',time.ctime())
start = time.time()
time.sleep(random.random() * 40)
end=time.time()
print( 'Task Marlon runs %0.2f seconds.' %(end - start),'~~~~',time.ctime()) def Allen():
print( "\nRun task Allen-%s******ppid:%s"%(os.getpid(),os.getppid()),'~~~~',time.ctime())
start = time.time()
time.sleep(random.random() * 30)
end = time.time()
print( 'Task Allen runs %0.2f seconds.' %(end - start),'~~~~',time.ctime()) def Frank():
print( "\nRun task Frank-%s******ppid:%s"%(os.getpid(),os.getppid()),'~~~~',time.ctime())
start = time.time()
time.sleep(random.random() * 20)
end = time.time()
print( 'Task Frank runs %0.2f seconds.' %(end - start),'~~~~',time.ctime()) if __name__ == '__main__':
func_list = [Lee,Marlon,Allen,Frank]
print('parent process id %s'%os.getpid()) pool = multiprocessing.Pool(4)
for func in func_list:
pool.apply_async(func) #Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中 print( 'Waiting for all subprocesses done...')
pool.close()
pool.join() #调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束
print ('All subprocesses done.')

执行结果

parent process id 98552
Waiting for all subprocesses done... Run task Lee--97316******ppid:98552 ~~~~ Thu Jun 16 15:20:50 2016 Run task Marlon-95536******ppid:98552 ~~~~ Thu Jun 16 15:20:50 2016 Run task Allen-95720******ppid:98552 ~~~~ Thu Jun 16 15:20:50 2016 Run task Frank-98784******ppid:98552 ~~~~ Thu Jun 16 15:20:50 2016
Task Allen runs 0.31 seconds. ~~~~ Thu Jun 16 15:20:51 2016
Task Lee,runs 7.00 seconds. ~~~~ Thu Jun 16 15:20:57 2016
Task Frank runs 14.48 seconds. ~~~~ Thu Jun 16 15:21:05 2016
Task Marlon runs 31.72 seconds. ~~~~ Thu Jun 16 15:21:22 2016
All subprocesses done.

multiprocessing pool map

#coding: utf-8
import multiprocessing def m1(x):
print x * x if __name__ == '__main__':
pool = multiprocessing.Pool(multiprocessing.cpu_count())
i_list = range(8)
pool.map(m1, i_list)

一次执行结果

0
1
4
9
16
25
36
49

 参考:http://www.dotblogs.com.tw/rickyteng/archive/2012/02/20/69635.aspx 

问题:http://bbs.chinaunix.net/thread-4111379-1-1.html

#coding: utf-8
import multiprocessing
import logging def create_logger(i):
print i class CreateLogger(object):
def __init__(self, func):
self.func = func if __name__ == '__main__':
ilist = range(10) cl = CreateLogger(create_logger)
pool = multiprocessing.Pool(multiprocessing.cpu_count())
pool.map(cl.func, ilist) print "hello------------>"

一次执行结果

0
1
2
3
4
5
6
7
8
9
hello------------>

python进程池:multiprocessing.pool的更多相关文章

  1. Python进程池multiprocessing.Pool的用法

    一.multiprocessing模块 multiprocessing模块提供了一个Process类来代表一个进程对象,multiprocessing模块像线程一样管理进程,这个是multiproce ...

  2. python进程池multiprocessing.Pool和线程池multiprocessing.dummy.Pool实例

    进程池: 进程池的使用有四种方式:apply_async.apply.map_async.map.其中apply_async和map_async是异步的,也就是启动进程函数之后会继续执行后续的代码不用 ...

  3. python中的进程池:multiprocessing.Pool()

    python中的进程池: 我们可以写出自己希望进程帮助我们完成的任务,然后把任务批量交给进程池 进程池帮助我们创建进程完成任务,不需要我们管理.进程池:利用multiprocessing 下的Pool ...

  4. 【python小随笔】进程池 multiprocessing.Pool的简单实现与踩过的坑

    #导入进程模块 import multiprocessing #创建进程池 坑:一定要在循环外面创建进程池,不然会一直创建 pool = multiprocessing.Pool(30) for Si ...

  5. Python多进程池 multiprocessing Pool

    1. 背景 由于需要写python程序, 定时.大量发送htttp请求,并对结果进行处理. 参考其他代码有进程池,记录一下. 2. 多进程 vs 多线程 c++程序中,单个模块通常是单进程,会启动几十 ...

  6. python 进程池pool简单使用

    平常会经常用到多进程,可以用进程池pool来进行自动控制进程,下面介绍一下pool的简单使用. 需要主动是,在Windows上要想使用进程模块,就必须把有关进程的代码写if __name__ == ‘ ...

  7. python进程池剖析(一)

    python中两个常用来处理进程的模块分别是subprocess和multiprocessing,其中subprocess通常用于执行外部程序,比如一些第三方应用程序,而不是Python程序.如果需要 ...

  8. python 进程池(multiprocessing.Pool)和线程池(threadpool.ThreadPool)的区别与实例

    一般我们是通过动态创建子进程(或子线程)来实现并发服务器的,但是会存在这样一些缺点: 1.动态创建进程(或线程)比较耗费时间,这将导致较慢的服务器响应.  2.动态创建的子进程通常只用来为一个客户服务 ...

  9. python 进程池Pool以及Queue的用法

    import os,time,random from multiprocessing import Pool def task(name): print('正在运行的任务:%s,PID:(%s)'%( ...

随机推荐

  1. Shader实例:NGUI图集中的UISprite正确使用Shader的方法

    效果: 变灰,过滤,流光 都是UI上常用效果. 比如: 1.按钮禁用时,变灰. 2.一张Icon要应付圆形背景框,又要应付矩形背景框.就要使用过滤的方式来裁剪. 避免了美术提供两张icon的麻烦,又节 ...

  2. 【JBOSS】数据库连接配置小结

    数据库驱动位置: %JBOSS_HOME%\server\default\lib目录下. 数据库配置文件位置:JBOSS_HOME\docs\examples\jca\XXXX-ds.xml < ...

  3. 如何删除 eclipse debugger 下不用的Java Application

    问题描述:之前写了几个 main 函数 用于测试,现在删除掉了 但是debugger下还存在,看着不爽,想删掉 解决方案: 1.项目--右键 2.删掉就可以了

  4. js中的navigator对象

    Navigator 对象包含有关浏览器的信息.所有浏览器都支持该对象 在控制台中输出相关信息的代码 <script> console.log(navigator); </script ...

  5. Cocos2d 利用继承Draw方法制作可显示三维数据(宠物三维等)的三角形显示面板

    很久没有写博客了,这段时间比较忙,又是搬家又是做自己的项目,还有太多琐碎的事情缠身,好不容易抽出时间把最近自己做的一些简单例子记录一下. 在我的项目中,我需要一个显示面板来显示游戏中的一个三维数据,例 ...

  6. 如何通过倾斜摄影数据手动配置s3c索引文件?

    如何通过倾斜摄影数据手动配置s3c索引文件? 大家知道,倾斜摄影数据最常见的是OSGB格式,并且是由一个一个的Tile分级文件夹构成的Data文件夹.结构一般如下图所示: 那么,如何才能把模型的各个瓦 ...

  7. android ADT 无法查看第三方jar源代码

    Source not foundThe JAR of this class file belongs to container 'Android Private Libraries' which do ...

  8. jquery如何获取第一个或最后一个子元素?

    通过children方法,children("input:first-child") 1 2 $(this).children("input:first-child&qu ...

  9. bzoj 2739 最远点

    Description 给你一个N个点的凸多边形,求离每一个点最远的点. Input 本题有多组数据,第一行一个数T,表示数据组数. 每组数据第一行一个数N,表示凸多边形点的个数,接下来N对数,依次表 ...

  10. 如何修改SQL SERVER服务器的端口

    sql server的服务器端口默认是1433,设置服务器端口的位置在这里: 这里的端口,默认是1433,我把它改成了65499 修改端口之后,客户端如何连接? 下面是SSMS的连接方式: 下面是一个 ...