题目大意:有一个无限长的一维的棋盘,棋盘上N个格子放置着棋子。两个人轮流操作,每次操作能选择其中一个棋子向左移动,但不能越过其它棋子或者两枚棋子放在同一格中,最后不能操作的人算输,问先手是否必胜?

思路:就是裸的阶梯博弈(staircase nim)方法也很简单。首先每个棋子能向右移动的距离是有限的,最多到前一个棋子处就停止了,比如第一个sample :1 2 3 每个棋子都不能移动就是 0 0 0 第二个sample: 1 5 6 7 9 12 14 17 就是0 3 0 0 1 2 1 2 这样每次移动一枚棋子向左n步,相当于把对应第二排的那个数据减去n,那个数据右边一个数加上n
这样问题就转变成了:有n堆石头,每次可以从一堆中拿出一些或全部石头给相邻的右边的一堆石头,或者最后一堆减去一些或全部石头,谁不能操作谁输,问先手是否必胜?
关于这个问题的结论和证明网上多如牛毛,结论是:假设从最后一堆石头开始与上一堆相间的石头数的异或和为P,P为0时先手必败反之必胜。比如a1,a2,a3,a4,a5   P的值就是a5 xor a3  xor a1

证明无非就是说明当不为平衡态时必然存在操作使局面进入平衡态,而局面已然是平衡态时任何操作都会破坏平衡。这里不再累述。说一下对这个问题的一些直观认识:为了叙述方便,可以把与最后一堆石头相间的石头称为有用堆(这里是我生造的一个词)而其它堆称为无用

堆。

□■□■□■□■□■□

如图空心方块表示有用堆,实心方块表示无用堆,显然把无用堆的石头放到有用堆的操作都是没有意义的,因为这次从无用堆放进多少块石头到有用堆,下一次操作就能将这些运进来的石头扔给下一个无用堆或者扔掉(最后一堆石头),而有用堆石头的序列分毫未变,因此只需看有用堆的石头情况即可。而有用堆的石头放进无用堆相当于扔掉的操作,因为刚才已经证明无用堆中的石头是不起作用毫无意义的,这样就将问题化为了有用堆的NIM游戏!!因此只需计算有用堆的异或和就能计算出先手的胜负情况

//poj1704

#include<cstdio>

#include<string.h>

#include<iostream>

using namespace std;

int a[1009]={0};

void qsort(int l,int r)

{

int i=l,j=r,mid=a[(l+r)>>1],temp;

while(i<j)

{

while(a[i]<mid)i++;while(a[j]>mid)j--;

if(i<=j)

{

temp=a[i];a[i]=a[j];a[j]=temp;

i++;j--;

}

}

if(i<r)qsort(i,r);

if(l<j)qsort(l,j);

}

int main()

{

int n,t,chess[1009]={0};

scanf("%d",&t);

while(t--)

{

int x=0,last=0;

scanf("%d",&n);

for(int i=1;i<=n;i++)scanf("%d",&a[i]);

qsort(1,n);

for(int i=1;i<=n;i++)

{

chess[i]=a[i]-last-1;

last=a[i];

}

for(int i=n;i>=1;i=i-2)

x=x^chess[i];

if (x!=0)printf("Georgia will win\n");else printf("Bobwill win\n");

}

return 0;

}

调试小结:3次WA 原因:未看清棋子顺序不是从小到大!!

Poj1704:staircase nim【博弈】的更多相关文章

  1. POJ1704 Georgia and Bob(Nim博弈变形)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14312   Accepted: 4840 ...

  2. Nim博弈&&POJ1704

    Nim博弈 题目 有n堆物品,两人轮流取,每次取某堆中不少于1个,先取完者胜. 分析 经典问题,该问题的策略也成为了许多问题的基础. 要判断游戏的胜负只需要异或运算就可以了,有以下结论: $a_1 \ ...

  3. HDU 2509 Nim博弈变形

    1.HDU 2509  2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...

  4. HDU 1907 Nim博弈变形

    1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...

  5. zoj3591 Nim(Nim博弈)

    ZOJ 3591 Nim(Nim博弈) 题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式). 方法是这样的,由于Nim博 ...

  6. hdu 1907 John&& hdu 2509 Be the Winner(基础nim博弈)

    Problem Description Little John is playing very funny game with his younger brother. There is one bi ...

  7. 【POJ】1704 Georgia and Bob(Staircase Nim)

    Description Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, ...

  8. 关于NIM博弈结论的证明

    关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...

  9. HDU - 1850 Nim博弈

    思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...

随机推荐

  1. JVM 内存机制理解【转自http://www.cnblogs.com/dingyingsi/p/3760447.html】

    我们知道,计算机CPU和内存的交互是最频繁的,内存是我们的高速缓存区,用户磁盘和CPU的交互,而CPU运转速度越来越快,磁盘远远跟不上CPU的读写速度,才设计了内存,用户缓冲用户IO等待导致CPU的等 ...

  2. 动手实现 Redux(四):共享结构的对象提高性能

    接下来两节某些地方可能会稍微有一点点抽象,但是我会尽可能用简单的方式进行讲解.如果你觉得理解起来有点困难,可以把这几节多读多理解几遍,其实我们一路走来都是符合“逻辑”的,都是发现问题.思考问题.优化代 ...

  3. html文本溢出显示省略字符的两种常用方法

    方法一:使用CSS溢出省略的方式解决 解决效果如下: css代码: display: -webkit-box; display: -moz-box; white-space: pre-wrap; wo ...

  4. (转)配置Spring管理的bean的作用域

    http://blog.csdn.net/yerenyuan_pku/article/details/52833477 Spring管理的bean的作用域有: singleton 在每个Spring ...

  5. k8s集群部署之环境介绍与etcd数据库集群部署

    角色 IP 组件 配置 master-1 192.168.10.11 kube-apiserver kube-controller-manager kube-scheduler etcd 2c 2g ...

  6. 基于纯注解的spring开发的介绍

    几个核心注解的介绍1.@Configuration它的作用是:将一个java类修饰为==配置文件==,在这个java类进行组件注册1package com.kkb.config; import org ...

  7. Linux-03 Linux下的tar命令

    功能说明 用来建立,还原备份文件的工具程序,它可以加入,解开备份文件内的文件 参数 -c: 建立压缩档案 -x:解压 -t:查看内容 -r:向压缩归档文件末尾追加文件 -u:更新原压缩包中的文件 这五 ...

  8. OpenCV2:第十章 视频操作

    一.简介 OpenCV提供了专门操作视频的接口类VideoCapture 二.构造VideoCapture类 VideoCapture::VideoCapture() VideoCapture::Vi ...

  9. Ubuntu修改时区和时间

    1.查看当前时区 date -R 返回显示是 +0000 2.修改时区 tzselect 然后提示选择时区,按顺序选4.9.1,然后确认选1 3.更新本地时区 sudo cp /usr/share/z ...

  10. 用Jenkins构建项目实战

    登录Jenkins,新建任务 输入一个任务名称,选择一个项目类型 使用自定义工作空间:使该项目独立于系统的工作空间 自动从Git下载源码,点击添加可以增加凭证 日程表的参数: 第一个参数代表的是分钟 ...