bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】
看着就像反演,所以先推式子(默认n<m):
\]
\]
\]
\]
一般这样就行了,但是这里T很大,所以看看有没有能预处理的东西,枚举p=dg
\]
\]
前面那段和nm有关,分块来做;考虑怎么预处理后面的
显然是个积性的,所以考虑线性筛出来前缀和即可
#include<iostream>
#include<cstdio>
using namespace std;
const int N=5000005,mod=1e9+7;
int T,k,n,m,p[N],tot,s[N],f[N],sm[N],ans;
bool v[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
int main()
{
T=read(),k=read();
f[1]=1;
for(int i=2;i<=5000000;i++)
{
if(!v[i])
{
p[++tot]=i;
s[i]=ksm(i,k);
f[i]=s[i]-1;
}
for(int j=1;j<=tot&&i*p[j]<=5000000;j++)
{
v[i*p[j]]=1;
if(i%p[j]==0)
{
f[i*p[j]]=1ll*f[i]*s[p[j]]%mod;
break;
}
f[i*p[j]]=1ll*f[i]*f[p[j]]%mod;
}
}
for(int i=1;i<=5000000;i++)
sm[i]=(sm[i-1]+f[i])%mod;
while(T--)
{
n=read(),m=read(),ans=0;
if(n>m)
swap(n,m);
for(int i=1,la;i<=n;i=la+1)
{
la=min(n/(n/i),m/(m/i));
ans=(ans+1ll*(n/i)*(m/i)%mod*(sm[la]-sm[i-1])%mod)%mod;
}
printf("%d\n",(ans+mod)%mod);
}
return 0;
}
bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】的更多相关文章
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- bzoj 4407 于神之怒加强版 (反演+线性筛)
于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1184 Solved: 535[Submit][Status][Discuss] D ...
- BZOJ 4407: 于神之怒加强版 莫比乌斯反演 + 线筛积性函数
Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意 ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)
Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
随机推荐
- Bean property XX' is not writable or has an invalid setter method
刚刚搞spring.property注入时遇到这个问题,百度一下.非常多人说是命名或者get set方法不一致的问题,可是这个我是知道的.写的时候也注意到这些.所以应该不是这个问题.以为是xml头写的 ...
- TListView使用方法1(转)
ListView1.Items 为标准 Tlistitems类 ListView1.Items (1)赋值 with ListView1.Items.Add do begin Caption:=cap ...
- 【转载】关于Hash
这个HASH算法不是大学里数据结构课里那个HASH表的算法.这里的HASH算法是密码学的基础,比较常用的有MD5和SHA,最重要的两条性质,就是不可逆和无冲突.所谓不可逆,就是当你知道x的HASH值, ...
- JAVA 保留两位小数
package com.oracle.pojo; import java.math.BigDecimal; import java.text.DecimalFormat; import java.te ...
- java工具类(四)之实现日期随意跳转
Java实现日期随意跳转 项目开发过程中.须要进行订单提醒日期的设置.主要包含设置每月指定的日期或者指定的天数,代码例如以下: public static String DateOperation(S ...
- 李洪强经典面试案例33-如何面试 iOS 工程师
如何面试 iOS 工程师 推荐序 私下和很多朋友交流过这个话题,大部分求职者认为,我能做基本的 iOS 开发工作,就达到公司的要求了,殊不知公司招聘员工,更希望的是这个人能够在关键时候能够发挥一般 ...
- windows下在eclipse上远程连接hadoop集群调试mapreduce错误记录
第一次跑mapreduce,记录遇到的几个问题,hadoop集群是CDH版本的,但我windows本地的jar包是直接用hadoop2.6.0的版本,并没有特意找CDH版本的 1.Exception ...
- ORACLE数据库忘记SYS和SYSTEM密码,SYSTEM被锁定怎么办?
本人忘性太大,竟然将ORACLE的Sys用户和system用户密码搞忘,而且多次尝试登录system后,造成system被锁定. 经过一番尝试,终于解决.过程如下: 首先,重建sys密码文件.重建方式 ...
- bash shell parameter expansion
1 ${parameter%word}和${parameter%%word} ${parameter%word},word是一个模式,从parameter这个参数的末尾往前开始匹配.单个%进行最短匹配 ...
- 关于LAMP配置Let’s Encrypt SSL证书
昨天建站,买VPS,先装了LAMP,部署wordpress,测试OK了,然后才买的域名,申请SSL证书. 结果Let’s Encrypt cerbot申请证书遇到了麻烦,--apache参数怎么也识别 ...