bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】
看着就像反演,所以先推式子(默认n<m):
\]
\]
\]
\]
一般这样就行了,但是这里T很大,所以看看有没有能预处理的东西,枚举p=dg
\]
\]
前面那段和nm有关,分块来做;考虑怎么预处理后面的
显然是个积性的,所以考虑线性筛出来前缀和即可
#include<iostream>
#include<cstdio>
using namespace std;
const int N=5000005,mod=1e9+7;
int T,k,n,m,p[N],tot,s[N],f[N],sm[N],ans;
bool v[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
int main()
{
T=read(),k=read();
f[1]=1;
for(int i=2;i<=5000000;i++)
{
if(!v[i])
{
p[++tot]=i;
s[i]=ksm(i,k);
f[i]=s[i]-1;
}
for(int j=1;j<=tot&&i*p[j]<=5000000;j++)
{
v[i*p[j]]=1;
if(i%p[j]==0)
{
f[i*p[j]]=1ll*f[i]*s[p[j]]%mod;
break;
}
f[i*p[j]]=1ll*f[i]*f[p[j]]%mod;
}
}
for(int i=1;i<=5000000;i++)
sm[i]=(sm[i-1]+f[i])%mod;
while(T--)
{
n=read(),m=read(),ans=0;
if(n>m)
swap(n,m);
for(int i=1,la;i<=n;i=la+1)
{
la=min(n/(n/i),m/(m/i));
ans=(ans+1ll*(n/i)*(m/i)%mod*(sm[la]-sm[i-1])%mod)%mod;
}
printf("%d\n",(ans+mod)%mod);
}
return 0;
}
bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】的更多相关文章
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- bzoj 4407 于神之怒加强版 (反演+线性筛)
于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1184 Solved: 535[Submit][Status][Discuss] D ...
- BZOJ 4407: 于神之怒加强版 莫比乌斯反演 + 线筛积性函数
Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意 ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)
Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
随机推荐
- mahout in Action2.2-聚类介绍-K-means聚类算法
聚类介绍 本章包含 1 实战操作了解聚类 2.了解相似性概念 3 使用mahout执行一个简单的聚类实例 4.用于聚类的各种不同的距离測算方法 作为人类,我们倾向于与志同道合的人合作-"鸟的 ...
- Autolayout和VFL
Autolayout,開始于iOS6.0 一.什么时候用autolayout比較适合 1.不负责任的骑墙派说法:apple的设备越来越多了,你的应用应该都使用al. (而且用sb) 2.要 ...
- XML Schema笔记
XML Schema是为了弥补DTD的不足而开发的一种新的用于约束和规范XML文档的标准 XML Schema作用: 定义可出现在文档中的元素定义可出现在文档中的属性定义哪些元素是子元素定义子元素的次 ...
- Visual Studio自动生成文件版本信息
一. 前言 通常,要控制输出文件的版本信息,只需要手动修改资源rc文件中的Version,即可在输出文件的文件属性里查看到对应的版本信息.如下图: 但是,版本号是会随时都更新的,每次bu ...
- LiberOJ#6178. 「美团 CodeM 初赛 Round B」景区路线规划 概率DP
题意 游乐园被描述成一张 n 个点,m 条边的无向图(无重边,无自环).每个点代表一个娱乐项目,第 i 个娱乐项目需要耗费 ci 分钟的时间,会让小 y 和妹子的开心度分别增加 h1i ,h2i ,他 ...
- spring list map set
1 list <!-- result in a setSomeList(java.util.List) call --> <property name="someList& ...
- 对云资源服务商资源读写的架构思考:前端代码走token
第一.统一了访问端接口.提高前端开发速度:第二统一了阿里各个产品的 数据读写模式: 第三,我们的服务器产生token时对读写规则做限制,特定的token由特定的规则产生,而不是让前端代代码去管控限制 ...
- spark 33G表
http://192.168.2.51:4041 http://hadoop1:8088/proxy/application_1512362707596_0006/executors/ Executo ...
- UILabel与UIFont的用法和属性的一些总结
初始化一个UILabel对象,并初始化大小 UILabel * label = [[UILabel alloc]initWithFrame:CGRectMake(100, 100, 100, 100) ...
- vue弹窗插件实战
vue做移动端经常碰到弹窗的需求, 这里写一个功能简单的vue弹窗 popup.vue <template> <div class="popup-wrapper" ...