【BZOJ】 1041: [HAOI2008]圆上的整点
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041
${x^{2}+y^{2}=r^{2} }$
${\Rightarrow y^{2}=(r-x)(r+x)}$
令${d=gcd(r-x,r+x)}$
则${y^{2}=d^{2}*\frac{r+x}{d}*\frac{r-x}{d}}$
再令${A=\frac{r+x}{d}}$,${B=\frac{r-x}{d}}$
则${y^{2}=d^{2}*A*B}$
考虑${y^{2}}$是完全平方数,${d^{2}}$是完全平方数,又${gcd(A,B)=1}$那么${A,B}$都是完全平方数。
设${A=a^{2}}$,${B=b^{2}}$
${A+B=a^{2}+b^{2}}$
${\Rightarrow \frac{2*r}{d}=a^{2}+b^{2}}$
考虑枚举${\frac{2*r}{d}}$,这一步的复杂度是${O(\sqrt{r})}$的,然后再在${\left [ 1,\sqrt{2*\frac{r}{d}}/2 \right ]}$的范围内枚举${a}$,进而可以算出${A,b,B}$,然后判断${A,B}$是否互质,$B$是否为完全平方数,这样子就算出了第一象限的答案,然后将$ans*4+4$,算是统计了每一个象限的并且加上了坐标轴上的四个点。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
#include<map>
using namespace std;
#define llg long long
#define maxn 100010
#define yyj(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
llg ans,n;
inline llg getint()
{
llg w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar();
if (c=='-') q=, c=getchar(); while (c>='' && c<='') w=w*+c-'', c=getchar();
return q ? -w : w;
} void calc(llg d)
{
for (llg a=;a<=sqrt(d/);a++)
{
llg A=a*a,B=d-A,b=sqrt(B);
if (b*b==B && __gcd(A,B)== && A!=B) ans++;
}
} int main()
{
yyj("circle");
cin>>n;
for (llg i=;i<=sqrt(n*);i++)
if ((*n%i)==)
{
calc(i);
calc(*n/i);
}
cout<<ans*+;
return ;
}
【BZOJ】 1041: [HAOI2008]圆上的整点的更多相关文章
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
- BZOJ 1041 [HAOI2008]圆上的整点:数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...
- BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...
- BZOJ(2) 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4966 Solved: 2258[Submit][Sta ...
- 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4298 Solved: 1944[Submit][Sta ...
- 【BZOJ】1041: [HAOI2008]圆上的整点(几何)
http://www.lydsy.com:808/JudgeOnline/problem.php?id=1041 所谓的神题,我不会,直接题解..看了半天看懂题解了.详见hzwer博客 这题呢,我只能 ...
- 1041: [HAOI2008]圆上的整点 - BZOJ
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数.Input rOutput 整点个数Sample Input4Sample Output4HINT n ...
随机推荐
- 支持Linux系统的加密狗
深思数盾 https://www.sense.com.cn/ 产品:精锐5 版本:标准版.精灵版.IE版.时钟锁 快速实现高安全度的软件保护,轻松定义多种授权模式1.防止软件盗版,防止逆向工程 通过增 ...
- python之进程,线程,协程简单理解
进程:资源单位,由操作系统控制调度.正在执行的一个程序或者过程,进程之间不共享资源,进程间通讯手段:管道,队列,信号量等.多用于计算密集型场景,如金融计算 线程:是cpu的最小执行单位,由操作系统控制 ...
- DDD关键知识点整理汇总
创建领域对象采用构造函数或者工厂,如果用工厂时需要依赖于领域服务或仓储,则通过构造函数注入到工厂: 一个聚合是由一些列相联的Entity和Value Object组成,一个聚合有一个聚合根,聚合根是E ...
- xpath详细讲解
什么是XML XML 指可扩展标记语言(EXtensible Markup Language) XML 是一种标记语言,很类似 HTML XML 的设计宗旨是传输数据,而非显示数据 XML 的标签需要 ...
- Asp.net(C#)年月日时分秒毫秒
年月日时分秒毫秒格式:yyyyMMddHHmmssfff
- luogu P1003 铺地毯
水题 #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; t ...
- python,day3,函数基础-3
本节内容 1. 函数基本语法及特性 2. 参数与局部变量 3. 返回值 嵌套函数 4.递归 5.匿名函数 6.函数式编程介绍 7.高阶函数 8.内置函数 1.函数基本语法及特性 函数是什么? 函数一词 ...
- PyTorch进行深度学习入门
一.PyTorch是什么? 这是一个基于Python的科学计算软件包,针对两组受众: ①.NumPy的替代品,可以使用GPU的强大功能 ②.深入学习研究平台,提供最大的灵活性和速度 二.入门 ①.张量 ...
- docker运行镜像报错:"write init-p: broken pipe"
docker: Error response from daemon: OCI runtime create failed: container_linux.go:344: starting cont ...
- How to using Piwis Tester II code Porsche rear end electronics
V18.100 Piwis Tester II Diagnostic Tool For Porsche With CF30 Laptop High Quality Top 7 Reasons to G ...