优雅的暴力。

设三个点为 \((i,j,k)\),则有 \(6\) 个未知数即 \(x_i,x_j,x_k,y_i,y_j,y_k\)。又因为有 \(2\) 条关于这 \(6\) 个未知数的方程 \(ij=jk,ij=ik\),所以一定能通过枚举其中的 \(4\) 个量来求解,时间复杂度 \(O(n^4)\)。

而这个 \(O(n^4)\) 的暴力是肉眼可见的跑不满(


考虑先枚举点 \(i\),则有以下四种情况:

解得 \(x=a,y=a-b\)。

其中,\(a,x>0,0\le b,y \le a\)。

解得 \(x=a,y=a-b\)。

其中,其中,\(a,x>0,0\le b,y\le a,\color{red}b\not= 0\)。

解得 \(x=2b-a,y=b-a\)。

其中,\(0\le a<b,0\le x,y\)。

解得 \(x=2b-a,y=b-a\)。

其中,\(0\le a<b,0\le x,y,\color{red}a\not=0\)。


注意,有些同时存在于两种情况的状态, 需要通过标红的判断去除。

然后就能敲出以下代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=310;
inline int read(){
int x=0;
char c=getchar();
for(;(c^'.')&&(c^'*');c=getchar());
return c=='*';
}
bool c[maxn][maxn];
int n,ans;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
c[i][j]=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(!c[i][j]) continue;
for(int a=0;a<=n;a++){
for(int b=0;b<=a;b++){
if(a&&i+a<=n&&j+a<=n&&i-a+b>0&&j+a+b<=n)
ans+=(c[i+a][j+a]&c[i-a+b][j+a+b]);
if(a&&b&&i-a>0&&j+a<=n&&i+a-b<=n&&j+a+b<=n)
ans+=(c[i-a][j+a]&c[i+a-b][j+a+b]);
}
for(int b=a+1;b<=n;b++){
if(i-b-b+a>0&&j+a<=n&&i-b+a>0&&j+a+b<=n)
ans+=(c[i-b-b+a][j+a]&c[i-b+a][j+a+b]);
if(a&&i+b+b-a<=n&&j+a<=n&&i+b-a<=n&&j+a+b<=n)
ans+=(c[i+b+b-a][j+a]&c[i+b-a][j+a+b]);
}
}
}
printf("%d\n",ans);
return 0;
}

然后你会获得 \(51pt\) 的高分。

容易发现,代码中搜索到了许多冗余的状态,考虑将判断放到循环之外:


#include<bits/stdc++.h>
using namespace std;
const int maxn=310;
inline int read(){
int x=0;
char c=getchar();
for(;(c^'.')&&(c^'*');c=getchar());
return c=='*';
}
bool c[maxn][maxn];
int n,ans;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
c[i][j]=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(!c[i][j]) continue;
for(int a=0;a<=n;a++){
if(a&&i+a<=n&&j+a<=n)
for(int b=max(a-i+1,0);b<=a&&j+a+b<=n;b++)
ans+=(c[i+a][j+a]&c[i-a+b][j+a+b]);
if(a&&i-a>0&&j+a<=n)
for(int b=max(i+a-n,1);b<=a&&b<=n-j-a;b++)
ans+=(c[i-a][j+a]&c[i+a-b][j+a+b]);
if(j+a<=n)
for(int b=a+1;j+a+b<=n&&b+b<i+a;b++)
ans+=(c[i-b-b+a][j+a]&c[i-b+a][j+a+b]);
if(a&&j+a<=n)
for(int b=a+1;j+a+b<=n&&b+b<=n-i+a;b++)
ans+=(c[i+b+b-a][j+a]&c[i+b-a][j+a+b]);
}
}
printf("%d\n",ans);
return 0;
}

然后就过了。

祝AC。

[USACO20FEB]Equilateral Triangles P 题解的更多相关文章

  1. Project Euler 94:Almost equilateral triangles 几乎等边的三角形

    Almost equilateral triangles It is easily proved that no equilateral triangle exists with integral l ...

  2. UVA 12651 Triangles

    You will be given N points on a circle. You must write a program to determine how many distinctequil ...

  3. 《C与指针》第四章练习

    本章问题 1.Is the following statement legal?If so,what does it do? (下面的语句是否合法,如果合法,它做了什么) 3 * x * x - 4 ...

  4. uva 11178 - Morley's Theorem

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  5. Matlab网格划分

    之前转载了一篇博客http://blog.sina.com.cn/s/blog_6163bdeb0102dvay.html,讲Matlab网格划分程序Distmesh,看了看程序,感觉程序写得有很多值 ...

  6. UVA_11178_Morley's_Theorem_(计算几何基础)

    描述 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=23&pag ...

  7. uva 11178 Morley&#39;s Theorem(计算几何-点和直线)

    Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states tha ...

  8. uva11178 Morley’s Theorem(求三角形的角三分线围成三角形的点)

    Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states that that the ...

  9. HTML入门12

    开始了解响应式图片 响应式,根据屏幕尺寸和分辨率的设备上都能良好工作以及其他特性的图片,接下来考虑怎样创建自适应得图片,专注于img元素,完成自适应. 分辨率切换,不同的尺寸 <img srcs ...

随机推荐

  1. Pandas 秘籍·翻译完成

    协议:CC BY-NC-SA 4.0 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远. 在线阅读 ApacheCN 面试求职交流群 724187166 ApacheCN 学习资源 ...

  2. IO复习

    /* 字节流 输入字节流: ---------| InputStream 所有输入字节流的基类. 抽象类 ------------| FileInputStream 读取文件的输入字节流 ------ ...

  3. zabbix 监控系统概述及部署

    zabbix 监控系统概述及部署 1.Zabbix是什么: zabbix是一个个基于web界而的提供分布式系统监视以及网络监视功能的企业级的开源解决方案. zabbix能监视各种网络参数,保证服务器系 ...

  4. java-数据库操作(JDBC)

    前言:JDBC用到的API和常用方法 DriverMannager类 加载驱动并创建与数据库的连接,通常使用Class类的静态方法forName()来实现加载驱动,使用getConnection(St ...

  5. Docker名词解释

    http://www.runoob.com/docker/docker-architecture.html  

  6. Kubernetes:容器资源需求与限制(约束)

    Blog:博客园 个人 A Container is guaranteed to have as much memory as it requests, but is not allowed to u ...

  7. 打造一款属于自己的CentOS操作系统

    文章目录 声明 关闭selinux以及firewalld 修改终端前缀显示 修改默认网卡名称为eth0 替换yum源 安装常用工具 优化history 配置回收站 迎宾显示 优化vim 清空yum缓存 ...

  8. 如何封装安全的go

    如何封装安全的go 在业务代码开发过程中,我们会有很大概率使用go语言的goroutine来开启一个新的goroutine执行另外一段业务,或者开启多个goroutine来并行执行多个业务逻辑.所以我 ...

  9. 网页外部注入vConsole调试

      概要 本篇介绍一种十分方便的方法为网站添加 vConsole 调试(通过篡改请求外部注入的方式,不需要您是网站的拥有者,主要用于调试线上站点). 之前已经发过一篇<借助FreeHttp为任意 ...

  10. Zabbix 6.0:原生高可用(HA)方案部署

    Blog:博客园 个人 本部署文档适用于CentOS 8.X/RHEL 8.X/Anolis OS 8.X/AlmaLinux 8.X/Rockey Linux 8.X. 原生的HA方案终于来了 相比 ...