优雅的暴力。

设三个点为 \((i,j,k)\),则有 \(6\) 个未知数即 \(x_i,x_j,x_k,y_i,y_j,y_k\)。又因为有 \(2\) 条关于这 \(6\) 个未知数的方程 \(ij=jk,ij=ik\),所以一定能通过枚举其中的 \(4\) 个量来求解,时间复杂度 \(O(n^4)\)。

而这个 \(O(n^4)\) 的暴力是肉眼可见的跑不满(


考虑先枚举点 \(i\),则有以下四种情况:

解得 \(x=a,y=a-b\)。

其中,\(a,x>0,0\le b,y \le a\)。

解得 \(x=a,y=a-b\)。

其中,其中,\(a,x>0,0\le b,y\le a,\color{red}b\not= 0\)。

解得 \(x=2b-a,y=b-a\)。

其中,\(0\le a<b,0\le x,y\)。

解得 \(x=2b-a,y=b-a\)。

其中,\(0\le a<b,0\le x,y,\color{red}a\not=0\)。


注意,有些同时存在于两种情况的状态, 需要通过标红的判断去除。

然后就能敲出以下代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=310;
inline int read(){
int x=0;
char c=getchar();
for(;(c^'.')&&(c^'*');c=getchar());
return c=='*';
}
bool c[maxn][maxn];
int n,ans;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
c[i][j]=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(!c[i][j]) continue;
for(int a=0;a<=n;a++){
for(int b=0;b<=a;b++){
if(a&&i+a<=n&&j+a<=n&&i-a+b>0&&j+a+b<=n)
ans+=(c[i+a][j+a]&c[i-a+b][j+a+b]);
if(a&&b&&i-a>0&&j+a<=n&&i+a-b<=n&&j+a+b<=n)
ans+=(c[i-a][j+a]&c[i+a-b][j+a+b]);
}
for(int b=a+1;b<=n;b++){
if(i-b-b+a>0&&j+a<=n&&i-b+a>0&&j+a+b<=n)
ans+=(c[i-b-b+a][j+a]&c[i-b+a][j+a+b]);
if(a&&i+b+b-a<=n&&j+a<=n&&i+b-a<=n&&j+a+b<=n)
ans+=(c[i+b+b-a][j+a]&c[i+b-a][j+a+b]);
}
}
}
printf("%d\n",ans);
return 0;
}

然后你会获得 \(51pt\) 的高分。

容易发现,代码中搜索到了许多冗余的状态,考虑将判断放到循环之外:


#include<bits/stdc++.h>
using namespace std;
const int maxn=310;
inline int read(){
int x=0;
char c=getchar();
for(;(c^'.')&&(c^'*');c=getchar());
return c=='*';
}
bool c[maxn][maxn];
int n,ans;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
c[i][j]=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(!c[i][j]) continue;
for(int a=0;a<=n;a++){
if(a&&i+a<=n&&j+a<=n)
for(int b=max(a-i+1,0);b<=a&&j+a+b<=n;b++)
ans+=(c[i+a][j+a]&c[i-a+b][j+a+b]);
if(a&&i-a>0&&j+a<=n)
for(int b=max(i+a-n,1);b<=a&&b<=n-j-a;b++)
ans+=(c[i-a][j+a]&c[i+a-b][j+a+b]);
if(j+a<=n)
for(int b=a+1;j+a+b<=n&&b+b<i+a;b++)
ans+=(c[i-b-b+a][j+a]&c[i-b+a][j+a+b]);
if(a&&j+a<=n)
for(int b=a+1;j+a+b<=n&&b+b<=n-i+a;b++)
ans+=(c[i+b+b-a][j+a]&c[i+b-a][j+a+b]);
}
}
printf("%d\n",ans);
return 0;
}

然后就过了。

祝AC。

[USACO20FEB]Equilateral Triangles P 题解的更多相关文章

  1. Project Euler 94:Almost equilateral triangles 几乎等边的三角形

    Almost equilateral triangles It is easily proved that no equilateral triangle exists with integral l ...

  2. UVA 12651 Triangles

    You will be given N points on a circle. You must write a program to determine how many distinctequil ...

  3. 《C与指针》第四章练习

    本章问题 1.Is the following statement legal?If so,what does it do? (下面的语句是否合法,如果合法,它做了什么) 3 * x * x - 4 ...

  4. uva 11178 - Morley's Theorem

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  5. Matlab网格划分

    之前转载了一篇博客http://blog.sina.com.cn/s/blog_6163bdeb0102dvay.html,讲Matlab网格划分程序Distmesh,看了看程序,感觉程序写得有很多值 ...

  6. UVA_11178_Morley's_Theorem_(计算几何基础)

    描述 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=23&pag ...

  7. uva 11178 Morley&#39;s Theorem(计算几何-点和直线)

    Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states tha ...

  8. uva11178 Morley’s Theorem(求三角形的角三分线围成三角形的点)

    Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states that that the ...

  9. HTML入门12

    开始了解响应式图片 响应式,根据屏幕尺寸和分辨率的设备上都能良好工作以及其他特性的图片,接下来考虑怎样创建自适应得图片,专注于img元素,完成自适应. 分辨率切换,不同的尺寸 <img srcs ...

随机推荐

  1. Nacos极简教程

    简介 Nacos是服务发现与注册,服务配置中心. Nacos 具有如下特性: 服务发现和服务健康监测:支持基于DNS和基于RPC的服务发现,支持对服务的实时的健康检查,阻止向不健康的主机或服务实例发送 ...

  2. JVM学习十 -(复习)内存分配与回收策略

    内存分配与回收策略 对象的内存分配,就是在堆上分配(也可能经过 JIT 编译后被拆散为标量类型并间接在栈上分配),对象主要分配在新生代的 Eden 区上,少数情况下可能直接分配在老年代,分配规则不固定 ...

  3. Python—列表元组和字典

    Python-列表元组和字典 列表 元组 字典 列表: 列表是Python中的一种数据结构,他可以存储不同类型的数据.尽量存储同一种类型 列表索引是从0开始的,我们可以通过索引来访问列表的值. 列表的 ...

  4. kubeadm部署安装+dashboard+harbor

    kubeadm 部署安装+dashboard+harbor master(2C/4G,cpu核心数要求大于2) 192.168.80.10 docker.kubeadm.kubelet.kubectl ...

  5. 数据库监测sql执行

    SQL Server Profiler可以检测在数据上执行的语句,特别是有的项目不直接使用sql语句,直接使用ORM框架的系统处理数据库的项目,在调试sql语句时,给了很大的帮助. 之前写了使用SQL ...

  6. LeetCode随缘刷题之回文数

    package leetcode.day_01_30; /** * 给你一个整数 x ,如果 x 是一个回文整数,返回 true :否则,返回 false . * <p> * 回文数是指正 ...

  7. MASA Framework - DDD设计(1)

    目录 MASA Framework - 整体设计思路 MASA Framework - EventBus设计 MASA Framework - MASA Framework - DDD设计(1) DD ...

  8. [LeetCode]66.加一(Java)

    原题地址: plus-one 题目描述: 给定一个由 整数 组成的 非空 数组所表示的非负整数,在该数的基础上加一. 最高位数字存放在数组的首位, 数组中每个元素只存储单个数字. 你可以假设除了整数 ...

  9. etcd受损节点重新加入集群

    文章目录 查看当前集群状态 删除受损etcd节点的数据 数据受损节点重新加入集群 修改etcd启动参数,重启etcd 由于自己的误操作,将A节点的etcd备份数据复制到B节点的etcd备份节点目录下, ...

  10. 初识面向对象(Day17-Day18)

    人狗大战的游戏 你现在是一家游戏公司的开发人员,现在需要你开发一款叫做<人狗大战>的游戏,你就思考呀,人狗作战,那至少需要2个角色,一个是人, 一个是狗,且人和狗都有不同的技能,比如人拿棍 ...