简要题意

你需要维护一个序列 \(a\),有 \(q\) 个操作,支持:

  • 1 l r x 将 \([l,r]\) 赋值为 \(x\)。
  • 2 l r 询问 \([l,r]\) 的最小值。

为了加大难度,\(a\) 不会直接告诉你,但是会告诉你一个长度为 \(n\) 的序列 \(b\) 和一个整数 \(k\),\(a\) 是将 \(b\) 复制 \(k\) 遍依次拼接而成。

\(1 \leq n,q \leq 10^{5},1 \leq k \leq 10^{4},1 \leq b_i \leq 10^9,1 \leq l_i \leq r_i \leq nk\)

思路

如果直接求出 \(a\),那么时间复杂度和空间复杂度(都是 \(O(nk)\))不能接受。

我发现,如果没有修改,那么只需要用一个 ST 表即可,具体操作如下:

  • 如果 \((r-l+1)\geq n\),那么一定包含所有 \(b\) 中的元素,直接返回 \(b[1,n]\) 的最小值。
  • 如果 \((l-1)\bmod n+1>(r-1)\bmod n+1\),那么这个区间是跨区块的,如图:

(红色为 \(b\) 块,蓝色为询问 \([l,r]\),黑色为数值)

那么就是相对应的后缀最小值和前缀最小值的最小值。

  • 剩下的情况是完全在 \(b\) 块中,ST 表查询。

如果带上修改呢?我们可以打一个标记,如果这个区间有修改,那么直接读取修改后的结果,否则走上述过程。这一步可以使用动态开点线段树完成。

不过我的动态开点线段树总是会 TLE 掉一些点,由于本题数据随机,我们使用 ODT 替换掉动态开点线段树,就可以 AC 了。

时间复杂度均摊 \(O(n\log n+q\log nk)\),可以通过本题。

代码

#include<bits/stdc++.h>
#pragma GCC optimize("Ofast", "inline", "-ffast-math")
#pragma GCC target("avx,sse2,sse3,sse4,mmx")
using namespace std; const int N=100005;
int n,m,k,f[N][25],lg[N]= {-1},pre[N],suf[N];
int min_=INT_MAX,min_ans=INT_MAX; int st(int l,int r){
int logg=lg[r-l+1];
return min(f[l][logg],f[r-(1<<logg)+1][logg]);
} int solve(int l,int r) {
if(r-l+1>=n){// 如果包含整个块,那么最小值一定是 min(b[1],...,b[n])
return min_;
}
l=(l-1)%n+1; // 转成块内坐标
r=(r-1)%n+1;// 转成块内坐标
if(l>r){// 如果不在同一个块,直接返回右半块+左半块
return min(pre[r],suf[l]);
}
return st(l,r); // 如果在同一个块,ST表查询
} struct node {
int l,r;
mutable int v;
bool covered;
node(int ls,int rs=-1,int vv=0,bool coverevd=0){
l=ls,r=rs,v=vv,covered=coverevd;
}
bool operator<(const node &a)const {
return this->l<a.l;
}
}; set<node>s; set<node>::iterator split(int p) {// 分裂区间
if(p>n*k)return s.end();
set<node>::iterator it=--s.upper_bound(node(p,0,0,0));
if((*it).l==p)return it;
int l=(*it).l,r=(*it).r,v=(*it).v;
bool covered=(*it).covered;
s.erase(it);
s.insert(node(l,p-1,v,covered));
return s.insert(node(p,r,v,covered)).first;
} void assign(int l,int r,int v) { // 区间赋值
set<node>::iterator rs=split(r+1),ls=split(l);
s.erase(ls,rs);
s.insert(node(l,r,v,1));
min_ans=min(min_ans,v);
} int query(int l,int r) {
int ans=INT_MAX;
set<node>::iterator rs=split(r+1),ls=split(l);
for(set<node>::iterator it=ls; it!=rs; ++it) {
bool covered=(*it).covered;
if(covered) { // 如果被覆盖了,就直接用覆盖的值
ans=min(ans,(*it).v);
} else { // 如果没有被覆盖,就去 ST 表中查询
ans=min(ans,solve((*it).l,(*it).r));
}
if(ans==min_ans)break; // 如果已经查到全序列最小值,就直接返回
}
return ans;
} int main() {
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) {
scanf("%d",&f[i][0]);
}
pre[0]=suf[n+1]=INT_MAX;
for(int i=1;i<=n;i++) {
pre[i]=min(pre[i-1],f[i][0]);
lg[i]=lg[i>>1]+1;
min_=min(min_,f[i][0]);
min_ans=min(min_ans,f[i][0]);
}
for(int i=n;i>=1;i--) {
suf[i]=min(suf[i+1],f[i][0]);
}
for(int j=1;j<=20;j++) {
for(int i=1;i<=n+1-(1<<j);i++){
f[i][j]=min(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
}
s.insert(node(1,n*k,min_,0));
scanf("%d",&m);
for(int i=1;i<=m;i++) {
int op,l,r,x;
scanf("%d%d%d",&op,&l,&r);
if(op==1) {
scanf("%d",&x);
assign(l,r,x);
} else {
printf("%d\n",query(l,r));
}
}
return 0;
}

CF803G Periodic RMQ Problem的更多相关文章

  1. CF803G - Periodic RMQ Problem 动态开点线段树 或 离线

    CF 题意 有一个长度为n × k (<=1E9)的数组,有区间修改和区间查询最小值的操作. 思路 由于数组过大,直接做显然不行. 有两种做法,可以用动态开点版本的线段树,或者离线搞(还没搞)( ...

  2. Codeforces 803G Periodic RMQ Problem 线段树

    Periodic RMQ Problem 动态开点线段树直接搞, 我把它分成两部分, 一部分是原来树上的, 一部分是后来染上去的,两个部分取最小值. 感觉有点难写.. #include<bits ...

  3. codeforces 803G Periodic RMQ Problem

    codeforces 803G Periodic RMQ Problem 题意 长度为\(1e5\)的数组复制\(1e4\)次,对新的数组进行区间覆盖和区间最小值查询两种操作,操作次数\(1e5\). ...

  4. AC日记——Periodic RMQ Problem codeforces 803G

    G - Periodic RMQ Problem 思路: 题目给一段序列,然后序列复制很多次: 维护序列很多次后的性质: 线段树动态开点: 来,上代码: #include <cstdio> ...

  5. (WAWAWAWAWAWAW) G. Periodic RMQ Problem

    没有联通门 : Codeforces G. Periodic RMQ Problem /* Codeforces G. Periodic RMQ Problem MMP 什么动态开点线段树啊 ... ...

  6. Codeforces 803 G. Periodic RMQ Problem

    题目链接:http://codeforces.com/problemset/problem/803/G 大致就是线段树动态开节点. 然后考虑到如果一个点还没有出现过,那么这个点显然未被修改,就将这个点 ...

  7. Codeforces 803G Periodic RMQ Problem ST表+动态开节点线段树

    思路: (我也不知道这是不是正解) ST表预处理出来原数列的两点之间的min 再搞一个动态开节点线段树 节点记录ans 和标记 lazy=-1 当前节点的ans可用  lazy=0 没被覆盖过 els ...

  8. BZOJ 3489: A simple rmq problem

    3489: A simple rmq problem Time Limit: 40 Sec  Memory Limit: 600 MBSubmit: 1594  Solved: 520[Submit] ...

  9. BZOJ3339 Rmq Problem

    [bzoj3339]Rmq Problem Description Input Output Sample Input 7 5 0 2 1 0 1 3 2 1 3 2 3 1 4 3 6 2 7 Sa ...

  10. bzoj 3489: A simple rmq problem k-d树思想大暴力

    3489: A simple rmq problem Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 551  Solved: 170[Submit][ ...

随机推荐

  1. Linux系统管理_磁盘管理——敬请期待!!!

    df 显示磁盘空间使用情况 -a 全部文件系统列表 -h 以方便阅读的方式显示 -T 列出文件系统类型 du 查看目录和文件的磁盘空间使用情况 -a 显示目录中所有文件大小 -h 以易读方式显示文件大 ...

  2. python关于Django搭建简单博客项目(教程)

    由于csdn各种django blog博文都有或多或少的bug,所以我决定自己写一篇,先附上教程,详解在另一篇博文里,为了便于大家复制粘贴,本文代码尽量不使用图片. 源代码及解析文章请在我的githu ...

  3. Linux进程间通信(二)

    信号 信号的概念 信号是Linux进程间通信的最古老的一种方式.信号是软件中断,是一种异步通信的方式.信号可以导致一个正在运行的进程被另一个正在运行的异步进程中断,转而处理某个突发事件. 一旦产生信号 ...

  4. Abp.Zero 手机号免密登录验证与号码绑定功能的实现(一):验证码模块

    这是一篇系列博文,我将使用Abp.Zero搭建一套集成手机号免密登录验证与号码绑定功能的用户系统: Abp.Zero 手机号免密登录验证与号码绑定功能的实现(一):验证码模块 Abp.Zero 手机号 ...

  5. ISCTF2022WP

    ISCTF2022改名叫套CTF吧(bushi),博主菜鸡一个,套题太多,挑一些题写下wp,勿喷. MISC 可爱的emoji   下载下来是个加密压缩包,根据hint掩码爆破密码 得到密码:KEYI ...

  6. 小菜鸡学习---<正则表达式学习笔记2>

    正则表达式学习笔记2 一.修饰符 前面我们学习的都是用于匹配的基本的关键的一些表达式符号,现在我们来学习修饰符.修饰符不写在正则表达式里,修饰符位于表达式之外,比如/runoob/g,这个最后的g就是 ...

  7. Unreal NetMode&NetRole 解析

    Version: Unreal 4.26 问题 为啥UE编辑器会有EPlayNetMode有三种让你选择. 为啥描述World 的ENetMode 会有4种,而不只是(Client/Server 2种 ...

  8. Go语言书籍推荐

    附录: 其他书籍的介绍:https://github.com/golang/go/wiki/Books Go程序设计语言 (圣经) 作者 艾伦 A.A.多诺万 Kernighan 下载地址 中文版PD ...

  9. 支持 equals 相等的对象(可重复对象)作为 WeakHashMap 的 Key

    原文地址 代码地址 问题 长链接场景下通常有一个类似 Map<String, Set<Long>> 的结构,用来查找一个逻辑组内的哪些用户,String 类型的 Entry.k ...

  10. 华为云平台部署教程之CNA\VRM的安装

    本教程仅含华为云平台搭建部署中CNA和VRM的安装,请按需求选择查看本文. 一.前期准备 1.硬件 服务器*4 交换机*3 网线 个人PC机 2.软件 PC机系统(win7/win10) KVM软件 ...