题面

这题虽然很老了但是挺好的

仍然套Burnside引理(因为有限制你并不能套Polya定理),思路和这个题一样,问题主要是如何求方案。

思路是把放珠子的方案看成一张图,然后就巧妙的变成了一个经典的路径计数问题,这里可以多矩乘一次然后统计对角线,即强行让它走回一开始的珠子,比较方便

注:这代码T了,我不想卡了,但是复杂度和正确性没问题,请根据自己的情况食用

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int mod=;
int T,n,m,k,t1,t2,mapp[][];
struct a
{
int mat[][];
void Clean()
{
memset(mat,,sizeof mat);
}
void Init()
{
for(int i=;i<=m;i++)
for(int j=;j<=m;j++)
mat[i][j]=mapp[i][j];
}
};
a Matime(a x,a y)
{
a ret; ret.Clean();
for(int i=;i<=m;i++)
for(int k=;k<=m;k++)
for(int j=;j<=m;j++)
ret.mat[i][j]+=x.mat[i][k]*y.mat[k][j]%mod,ret.mat[i][j]%=mod;
return ret;
}
a Maqpow(a x,int k)
{
if(k==) return x;
a tmp=Maqpow(x,k/);
return k%?Matime(x,Matime(tmp,tmp)):Matime(tmp,tmp);
}
int Calc(int x)
{
a cal; int ret=;
cal.Init(),cal=Maqpow(cal,x);
for(int i=;i<=m;i++)
ret+=cal.mat[i][i],ret%=mod;
return ret;
}
int Phi(int x)
{
int ret=x;
for(int i=;i*i<=x;i++)
if(x%i==)
{
ret/=i,ret*=i-;
while(x%i==) x/=i;
}
if(x!=) ret/=x,ret*=x-;
return ret;
}
void exGCD(int a,int b,int &x,int &y)
{
if(!b) x=,y=;
else exGCD(b,a%b,y,x),y-=a/b*x;
}
int Inv(int x)
{
int xx,yy;
exGCD(x,mod,xx,yy);
return (xx%mod+mod)%mod;
}
int Solve(int x)
{
int ret=;
for(int i=;i*i<=x;i++)
if(x%i==)
{
ret+=Phi(x/i)*Calc(i)%mod,ret%=mod;
if(i*i!=x) ret+=Phi(i)*Calc(x/i)%mod,ret%=mod;
}
return ret*Inv(x)%mod;
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=m;i++)
for(int j=;j<=m;j++)
mapp[i][j]=;
for(int i=;i<=k;i++)
{
scanf("%d%d",&t1,&t2);
mapp[t1][t2]=mapp[t2][t1]=;
}
printf("%d\n",Solve(n));
}
return ;
}

解题:POJ 2888 Magic Bracelet的更多相关文章

  1. poj 2888 Magic Bracelet(Polya+矩阵快速幂)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 4990   Accepted: 1610 D ...

  2. POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 3731   Accepted: 1227 D ...

  3. poj 2888 Magic Bracelet <polya定理>

    题目:http://poj.org/problem?id=2888 题意:给定n(n <= 10^9)颗珠子,组成一串项链,每颗珠子可以用m种颜色中一种来涂色,如果两种涂色方法通过旋转项链可以得 ...

  4. poj 2888 Magic Bracelet

    经典的有限制条件的Burnside计数+矩阵乘法!!! 对于这种限制条件的情况我们可以通过矩阵连乘得到,先初始化矩阵array[i][j]为1.如果颜色a和颜色b不能涂在相邻的珠子, 那么array[ ...

  5. POJ 2888 Magic Bracelet(burnside引理+矩阵)

    题意:一个长度为n的项链,m种颜色染色每个珠子.一些限制给出有些颜色珠子不能相邻.旋转后相同视为相同.有多少种不同的项链? 思路:这题有点综合,首先,我们对于每个n的因数i,都考虑这个因数i下的不变置 ...

  6. POJ 2888 Magic Bracelet [Polya 矩阵乘法]

    传送门 题意:竟然扯到哈利波特了.... 和上一题差不多,但颜色数很少,给出不能相邻的颜色对 可以相邻的连边建图矩阵乘法求回路个数就得到$f(i)$了.... 感觉这样的环上有限制问题挺套路的...旋 ...

  7. POJ 2888 Magic Bracelet ——Burnside引理

    [题目分析] 同样是Burnside引理.但是有几种颜色是不能放在一起的. 所以DP就好了. 然后T掉 所以矩阵乘法就好了. 然后T掉 所以取模取的少一些,矩阵乘法里的取模尤其要注意,就可以了. A掉 ...

  8. [POJ 2888]Magic Bracelet[Polya Burnside 置换 矩阵]

    也许更好的阅读体验 \(\mathcal{Description}\) 大意:给一条长度为\(n\)的项链,有\(m\)种颜色,另有\(k\)条限制,每条限制为不允许\(x,y\)颜色连在一起.要求有 ...

  9. 【POJ2888】Magic Bracelet Burnside引理+欧拉函数+矩阵乘法

    [POJ2888]Magic Bracelet 题意:一个长度为n的项链,有m种颜色的珠子,有k个限制(a,b)表示颜色为a的珠子和颜色为b的珠子不能相邻,求用m种珠子能串成的项链有多少种.如果一个项 ...

随机推荐

  1. POJ1035&&POJ3080&&POJ1936

    字符串处理专题,很早就写好了然而忘记写blog了 1035 题意:给你一些单词作为字典.然后让你查找一些单词.对于每个单词,如果在字典中就输出它.否则输出所有它通过删除||增加||替换一个字符能得到的 ...

  2. 汇编 (NOT)按位取反指令

    知识点:  (NOT)按位取反指令  逻辑取反(!)  按位取反(~)  SETZ(SETE) 取ZF位值保存  SETNZ(SETNE)将ZF位值取反后保存 一.逻辑取反(!) !111 ...

  3. 对JSON传递图片Base64编码的一点总结

    项目中跟Java对接的时候需要传输图片,经过Base64编码后传输的. 但是实际调试的时候发现Java那边始终无法正常解析出图片. 冷静想想之后,发现问题在于使用OpenCV读取图片,编码的是Mat: ...

  4. flask之jinjia2模板(二)

    1.1.模板传参 (1)主程序 from flask import Flask,render_template app = Flask(__name__) @app.route('/') def he ...

  5. stl源码剖析 详细学习笔记 算法(5)

    //---------------------------15/04/01---------------------------- //inplace_merge(要求有序) template< ...

  6. json-server+mockjs 模拟REST接口

    前言: 项目开发中,影响项目进程的常常是由于在前后端数据交互的开发流程中停滞,前端完成静态页面的开发后,后端迟迟未给到接口.而现在,我们就可以通过根据后端接口字段,建立一个REST风格的API接口,进 ...

  7. Hive的一些理解

    首先谈一下关于hive和hbase的区别的疑问(完全不是一个东西): 本质上来说hive和hbase没什么关系,虽然都是表,查数据等,但是他们根本就不是一个层面的东西 hive就是一个rapduce的 ...

  8. 【阿里巴巴】CBU技术部招聘

    如果你偏爱技术挑战,希望成就不一样的自己,欢迎投递简历至 yangyang.xiayy@alibaba-inc.com [业务简介] B2B内贸www.1688.com:1688.com是最大的内贸B ...

  9. TCP三路握手,本质是一个通信原理相关的问题

    在通信系统中,最基本的信息的传递都需要两步,发送方发送的消息和对方的回复确认:A->B Send, B->A Reply(ACK).如果多接触一下其他行业的通信流程和规范,例如航空.铁路调 ...

  10. maven util 类 添加 service

    直接关键代码: public class DictionaryUtil { // 以下的处理,是为了在工具类中自动注入service // 前提是在applicationContext.xml中,将该 ...