解题:POJ 2888 Magic Bracelet
这题虽然很老了但是挺好的
仍然套Burnside引理(因为有限制你并不能套Polya定理),思路和这个题一样,问题主要是如何求方案。
思路是把放珠子的方案看成一张图,然后就巧妙的变成了一个经典的路径计数问题,这里可以多矩乘一次然后统计对角线,即强行让它走回一开始的珠子,比较方便
注:这代码T了,我不想卡了,但是复杂度和正确性没问题,请根据自己的情况食用
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int mod=;
int T,n,m,k,t1,t2,mapp[][];
struct a
{
int mat[][];
void Clean()
{
memset(mat,,sizeof mat);
}
void Init()
{
for(int i=;i<=m;i++)
for(int j=;j<=m;j++)
mat[i][j]=mapp[i][j];
}
};
a Matime(a x,a y)
{
a ret; ret.Clean();
for(int i=;i<=m;i++)
for(int k=;k<=m;k++)
for(int j=;j<=m;j++)
ret.mat[i][j]+=x.mat[i][k]*y.mat[k][j]%mod,ret.mat[i][j]%=mod;
return ret;
}
a Maqpow(a x,int k)
{
if(k==) return x;
a tmp=Maqpow(x,k/);
return k%?Matime(x,Matime(tmp,tmp)):Matime(tmp,tmp);
}
int Calc(int x)
{
a cal; int ret=;
cal.Init(),cal=Maqpow(cal,x);
for(int i=;i<=m;i++)
ret+=cal.mat[i][i],ret%=mod;
return ret;
}
int Phi(int x)
{
int ret=x;
for(int i=;i*i<=x;i++)
if(x%i==)
{
ret/=i,ret*=i-;
while(x%i==) x/=i;
}
if(x!=) ret/=x,ret*=x-;
return ret;
}
void exGCD(int a,int b,int &x,int &y)
{
if(!b) x=,y=;
else exGCD(b,a%b,y,x),y-=a/b*x;
}
int Inv(int x)
{
int xx,yy;
exGCD(x,mod,xx,yy);
return (xx%mod+mod)%mod;
}
int Solve(int x)
{
int ret=;
for(int i=;i*i<=x;i++)
if(x%i==)
{
ret+=Phi(x/i)*Calc(i)%mod,ret%=mod;
if(i*i!=x) ret+=Phi(i)*Calc(x/i)%mod,ret%=mod;
}
return ret*Inv(x)%mod;
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=m;i++)
for(int j=;j<=m;j++)
mapp[i][j]=;
for(int i=;i<=k;i++)
{
scanf("%d%d",&t1,&t2);
mapp[t1][t2]=mapp[t2][t1]=;
}
printf("%d\n",Solve(n));
}
return ;
}
解题:POJ 2888 Magic Bracelet的更多相关文章
- poj 2888 Magic Bracelet(Polya+矩阵快速幂)
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 4990 Accepted: 1610 D ...
- POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 3731 Accepted: 1227 D ...
- poj 2888 Magic Bracelet <polya定理>
题目:http://poj.org/problem?id=2888 题意:给定n(n <= 10^9)颗珠子,组成一串项链,每颗珠子可以用m种颜色中一种来涂色,如果两种涂色方法通过旋转项链可以得 ...
- poj 2888 Magic Bracelet
经典的有限制条件的Burnside计数+矩阵乘法!!! 对于这种限制条件的情况我们可以通过矩阵连乘得到,先初始化矩阵array[i][j]为1.如果颜色a和颜色b不能涂在相邻的珠子, 那么array[ ...
- POJ 2888 Magic Bracelet(burnside引理+矩阵)
题意:一个长度为n的项链,m种颜色染色每个珠子.一些限制给出有些颜色珠子不能相邻.旋转后相同视为相同.有多少种不同的项链? 思路:这题有点综合,首先,我们对于每个n的因数i,都考虑这个因数i下的不变置 ...
- POJ 2888 Magic Bracelet [Polya 矩阵乘法]
传送门 题意:竟然扯到哈利波特了.... 和上一题差不多,但颜色数很少,给出不能相邻的颜色对 可以相邻的连边建图矩阵乘法求回路个数就得到$f(i)$了.... 感觉这样的环上有限制问题挺套路的...旋 ...
- POJ 2888 Magic Bracelet ——Burnside引理
[题目分析] 同样是Burnside引理.但是有几种颜色是不能放在一起的. 所以DP就好了. 然后T掉 所以矩阵乘法就好了. 然后T掉 所以取模取的少一些,矩阵乘法里的取模尤其要注意,就可以了. A掉 ...
- [POJ 2888]Magic Bracelet[Polya Burnside 置换 矩阵]
也许更好的阅读体验 \(\mathcal{Description}\) 大意:给一条长度为\(n\)的项链,有\(m\)种颜色,另有\(k\)条限制,每条限制为不允许\(x,y\)颜色连在一起.要求有 ...
- 【POJ2888】Magic Bracelet Burnside引理+欧拉函数+矩阵乘法
[POJ2888]Magic Bracelet 题意:一个长度为n的项链,有m种颜色的珠子,有k个限制(a,b)表示颜色为a的珠子和颜色为b的珠子不能相邻,求用m种珠子能串成的项链有多少种.如果一个项 ...
随机推荐
- 20155321 《网络攻防》 Exp8 Web基础
20155321 <网络攻防> Exp8 Web基础 基础问题回答 什么是表单? 表单是主要负责数据采集功能.主要是以下三个部分构成: 表单标签:包含处理表单数据所用的程序的URL以及数据 ...
- InkCanvas控件的使用
原文:InkCanvas控件的使用 ==>InkCanvas设置位置跟Canvas一样.通过InkCanvas.Top之类的设置,需要设置的属性有EditingMode,来自于InkCanvas ...
- WPF编程,通过Path类型制作沿路径运动的动画一种方法。
原文:WPF编程,通过Path类型制作沿路径运动的动画一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/article/de ...
- [CTSC2006]歌唱王国
[CTSC2006]歌唱王国 Tags:题解 题意 链接:在空串后不断随机添加字符,直到出现串\(S_i\)为止.求最终串的期望长度.\(\sum |S_i|\le 5*10^6\) 题解 以下内容来 ...
- WinDbg命令三部曲
WinDbg 命令三部曲:(一)WinDbg 命令手册 WinDbg 命令三部曲:(二)WinDbg SOS 扩展命令手册 WinDbg 命令三部曲:(三)WinDbg SOSEX 扩展命令手册
- stl源码剖析 详细学习笔记 hashtable
//---------------------------15/03/24---------------------------- //hashtable { /* 概述: sgi采用的是开链法完成h ...
- kafka0.8--0.11各个版本特性预览介绍
kafka-0.8.2 新特性 producer不再区分同步(sync)和异步方式(async),所有的请求以异步方式发送,这样提升了客户端效率.producer请求会返回一个应答对象,包括偏移量或者 ...
- jersey2 整合 spring + hibernate + log4j2
整合 spring jersey2 官方还未正式支持 spring4, 但网上有好多支持方案,折腾了一圈后,还是用了 spring3; pom 添加以下依赖配置 <!-- Spring --&g ...
- PHP学习 Cookie和Session
<?phpheader("Content-type:text/html;charset=utf-8");session_start(); $_SESSION['count'] ...
- 第二个spring冲刺第6天
今天的进展不多,对代码重新进行了整合,看起了比较简洁