http://www.lydsy.com/JudgeOnline/problem.php?id=1076

很容易想到方程

dp[i][j]表示抛出了i个宝物,已选宝物状态为j的期望最大得分

初始化dp[0][0]=0,其余都为负无穷

设宝物i的前提宝物集合为pre[i]

枚举第i次抛,当前已选宝物状态j,这一次抛出了第l个宝物

若 j&pre[l]==pre[l]  那么这个宝物就可以选,也可以不选

选,转移到dp[i+1][j|1<<l-1]

不选,转移到dp[i+1][j]

否则,这个宝物一定不能选,转移到dp[i+1][j]

那么问题来了,最后宝物状态集合是什么,最后输出什么?

Σ dp[n][s]/s ?

错误

因为 最后每种宝物状态出现的概率不一样

那就再递推个每种状态出现的概率?

尝试写了一发,

但状态出现的概率到后面会非常小非常小,小到让我存不了。。。

所以本思路GG

对了两个点,+递推出现概率的代码:

#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; int val[],pre[]; int bit[]; double dp[][<<];
double f[][<<];
bool vis[][<<]; const double eps=1e-; void read(int &x)
{
x=; int f=; char c=getchar();
while(!isdigit(c)) { if(c=='-') f=-; c=getchar(); }
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
x*=f;
} bool dcmp(double a,double b)
{
return fabs(a-b)<eps;
} int main()
{
int k,n;
read(k); read(n);
bit[]=;
for(int i=;i<=n;++i) bit[i]=bit[i-]<<;
int x;
for(int i=;i<=n;++i)
{
read(val[i]);
while()
{
read(x);
if(!x) break;
pre[i]+=bit[x-];
}
}
int s=bit[n];
vis[][]=true;
f[][]=;
for(int i=;i<k;++i)
for(int j=;j<s;++j)
if(vis[i][j])
{
for(int l=;l<=n;++l)
if((j&pre[l])==pre[l])
{
if((dp[i][j]+val[l])*f[i][j]/n>dp[i+][j|bit[l-]]*f[i+][j|bit[l-]])
{
dp[i+][j|bit[l-]]=dp[i][j]+val[l];
f[i+][j|bit[l-]]=f[i][j]/n;
vis[i+][j|bit[l-]]=true;
}
else if(dcmp((dp[i][j]+val[l])*f[i][j]/n,dp[i+][j|bit[l-]]*f[i+][j|bit[l-]]))
{
f[i+][j|bit[l-]]+=f[i][j]/n;
vis[i+][j|bit[l-]]=true;
}
}
}
double ans=;
for(int i=;i<s;++i) ans+=dp[k][i]*f[k][i];
printf("%.6lf",ans);
}

正解:倒推

dp[i][j] 表示抛了i个宝物,所选状态为j的最大期望得分

枚举这次抛出第l种宝物

能选,j&pre[l]==pre[l]

那么从选与不选里取最优解,dp[i][j]+=max(dp[i+1][j],dp[i+1][j|1<<l-1])

不能选 dp[i][j]+=dp[i+1][j]

对于dp[i][j] 来说,枚举n种可能抛出哪种宝物,概率是同样的

所以最后dp[i][j]/n 即是状态的期望得分

最后输出dp[n][0]

#include<cstdio>
#include<iostream> using namespace std; int val[],pre[]; int bit[]; double dp[][<<]; void read(int &x)
{
x=; int f=; char c=getchar();
while(!isdigit(c)) { if(c=='-') f=-; c=getchar(); }
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
x*=f;
} int main()
{
int k,n;
read(k); read(n);
bit[]=;
for(int i=;i<=n;++i) bit[i]=bit[i-]<<;
int x;
for(int i=;i<=n;++i)
{
read(val[i]);
while()
{
read(x);
if(!x) break;
pre[i]+=bit[x-];
}
}
int S=bit[n];
for(int i=k;i;--i)
for(int j=;j<S;++j)
{
for(int l=;l<=n;++l)
if((j&pre[l])==pre[l]) dp[i][j]+=max(dp[i+][j],dp[i+][j|bit[l-]]+val[l]);
else dp[i][j]+=dp[i+][j];
dp[i][j]/=n;
}
printf("%.6lf",dp[][]);
}

bzoj千题计划206:bzoj1076: [SCOI2008]奖励关的更多相关文章

  1. BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Sta ...

  2. [BZOJ1076][SCOI2008]奖励关 状压dp

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3070  Solved: 1595[Submit][Statu ...

  3. bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2989  Solved: 1557[Submit][Statu ...

  4. bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块

    http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...

  5. BZOJ1076:[SCOI2008]奖励关(状压DP,期望)

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  6. [BZOJ1076][SCOI2008]奖励关解题报告|状压DP

    你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝 ...

  7. Bzoj1076 [SCOI2008]奖励关

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1935  Solved: 1053 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一 ...

  8. BZOJ1076: [SCOI2008]奖励关【状压DP+期望DP】

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  9. bzoj千题计划179:bzoj1237: [SCOI2008]配对

    http://www.lydsy.com/JudgeOnline/problem.php?id=1237 如果没有相同的数不能配对的限制 那就是排好序后 Σ abs(ai-bi) 相同的数不能配对 交 ...

随机推荐

  1. LHS 和 RHS----你所不知道的JavaScript系列(1)

      变量的赋值操作会执行两个动作, 首先编译器会在当前作用域中声明一个变量(如果之前没有声明过), 然后在运行时引擎会在作用域中查找该变量, 如果能够找到就会对它赋值.----<你所不知道的Ja ...

  2. 虚拟机console最小化安装操作系统图文

    1. 概述2. 安装操作系统2.1 交互界面2.2 内核镜像解压等初始化2.3 磁盘发现2.4 硬件支持告警3. 开始安装3.1 语言选择3.2 键盘选择3.3 服务器类型3.4 配置主机名3.5 时 ...

  3. Docker_容器化jenkins

    Docker部署接口自动化持续集成环境第二步,容器化一个Jenkins! 接上文:Docker_容器化gitlab 1:pull一个jenkins镜像 docker pull jenkins 2:查看 ...

  4. Linux内核分析——第五周学习笔记

    第五周 扒开系统调用的“三层皮”(下) 一.知识点总结 (一)给MenuOS增加time和time-asm命令 在实验楼中,首先 强制删除menu (rm menu -rf) 重新克隆一个新版本的me ...

  5. ”数学口袋精灵“第二个Sprint计划---第二天

    “数学口袋精灵”第二个Sprint计划----第二天进度 任务分配: 冯美欣:欢迎界面的音效 吴舒婷:游戏界面的动作条,选择答案后的音效 林欢雯:完善算法代码的设计 进度:   冯美欣:找到了几个音乐 ...

  6. 读C#程序

    阅读下面程序,请回答如下问题: 问题1:这个程序要找的是符合什么条件的数? 问题2:这样的数存在么?符合这一条件的最小的数是什么? 问题3:在电脑上运行这一程序,你估计多长时间才能输出第一个结果?时间 ...

  7. JS面向对象编程:对象

    一般面向过程的写法都是写很多function,坏处:1.代码复用不好 2.函数名称容易重复冲突 下面介绍面向对象的写法: 在JS中每个函数function都是一个对象. 比如,下面这个就是一个对象,我 ...

  8. TCP/IP之大明内阁 转

    原创: 刘欣 码农翻身 2016-11-02 本文是<TCP/IP之大明王朝邮差>的前传,  讲一讲大明内阁的各位大人是怎么设计TCP/IP网络的.大明天启年间,  明熹宗朱由校醉心于木工 ...

  9. Docker(十二)-Docker Registry镜像管理

    Registry删除镜像.垃圾回收 Docker仓库在2.1版本中支持了删除镜像的API,但这个删除操作只会删除镜像元数据,不会删除层数据.在2.4版本中对这一问题进行了解决,增加了一个垃圾回收命令, ...

  10. XP局域网访问无权限、不能互相访问问题的完整解决方案

    XP局域网访问无权限问题的完整解决方案: 1:用管理员账户登录系统 2:在“开始”-- “运行”里输入 GPEDIT.MSC 目的是打开组策略选项 3:依次展开”WINDOWS设置”-”本地策略”-” ...