http://www.lydsy.com/JudgeOnline/problem.php?id=1076

很容易想到方程

dp[i][j]表示抛出了i个宝物,已选宝物状态为j的期望最大得分

初始化dp[0][0]=0,其余都为负无穷

设宝物i的前提宝物集合为pre[i]

枚举第i次抛,当前已选宝物状态j,这一次抛出了第l个宝物

若 j&pre[l]==pre[l]  那么这个宝物就可以选,也可以不选

选,转移到dp[i+1][j|1<<l-1]

不选,转移到dp[i+1][j]

否则,这个宝物一定不能选,转移到dp[i+1][j]

那么问题来了,最后宝物状态集合是什么,最后输出什么?

Σ dp[n][s]/s ?

错误

因为 最后每种宝物状态出现的概率不一样

那就再递推个每种状态出现的概率?

尝试写了一发,

但状态出现的概率到后面会非常小非常小,小到让我存不了。。。

所以本思路GG

对了两个点,+递推出现概率的代码:

#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; int val[],pre[]; int bit[]; double dp[][<<];
double f[][<<];
bool vis[][<<]; const double eps=1e-; void read(int &x)
{
x=; int f=; char c=getchar();
while(!isdigit(c)) { if(c=='-') f=-; c=getchar(); }
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
x*=f;
} bool dcmp(double a,double b)
{
return fabs(a-b)<eps;
} int main()
{
int k,n;
read(k); read(n);
bit[]=;
for(int i=;i<=n;++i) bit[i]=bit[i-]<<;
int x;
for(int i=;i<=n;++i)
{
read(val[i]);
while()
{
read(x);
if(!x) break;
pre[i]+=bit[x-];
}
}
int s=bit[n];
vis[][]=true;
f[][]=;
for(int i=;i<k;++i)
for(int j=;j<s;++j)
if(vis[i][j])
{
for(int l=;l<=n;++l)
if((j&pre[l])==pre[l])
{
if((dp[i][j]+val[l])*f[i][j]/n>dp[i+][j|bit[l-]]*f[i+][j|bit[l-]])
{
dp[i+][j|bit[l-]]=dp[i][j]+val[l];
f[i+][j|bit[l-]]=f[i][j]/n;
vis[i+][j|bit[l-]]=true;
}
else if(dcmp((dp[i][j]+val[l])*f[i][j]/n,dp[i+][j|bit[l-]]*f[i+][j|bit[l-]]))
{
f[i+][j|bit[l-]]+=f[i][j]/n;
vis[i+][j|bit[l-]]=true;
}
}
}
double ans=;
for(int i=;i<s;++i) ans+=dp[k][i]*f[k][i];
printf("%.6lf",ans);
}

正解:倒推

dp[i][j] 表示抛了i个宝物,所选状态为j的最大期望得分

枚举这次抛出第l种宝物

能选,j&pre[l]==pre[l]

那么从选与不选里取最优解,dp[i][j]+=max(dp[i+1][j],dp[i+1][j|1<<l-1])

不能选 dp[i][j]+=dp[i+1][j]

对于dp[i][j] 来说,枚举n种可能抛出哪种宝物,概率是同样的

所以最后dp[i][j]/n 即是状态的期望得分

最后输出dp[n][0]

#include<cstdio>
#include<iostream> using namespace std; int val[],pre[]; int bit[]; double dp[][<<]; void read(int &x)
{
x=; int f=; char c=getchar();
while(!isdigit(c)) { if(c=='-') f=-; c=getchar(); }
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
x*=f;
} int main()
{
int k,n;
read(k); read(n);
bit[]=;
for(int i=;i<=n;++i) bit[i]=bit[i-]<<;
int x;
for(int i=;i<=n;++i)
{
read(val[i]);
while()
{
read(x);
if(!x) break;
pre[i]+=bit[x-];
}
}
int S=bit[n];
for(int i=k;i;--i)
for(int j=;j<S;++j)
{
for(int l=;l<=n;++l)
if((j&pre[l])==pre[l]) dp[i][j]+=max(dp[i+][j],dp[i+][j|bit[l-]]+val[l]);
else dp[i][j]+=dp[i+][j];
dp[i][j]/=n;
}
printf("%.6lf",dp[][]);
}

bzoj千题计划206:bzoj1076: [SCOI2008]奖励关的更多相关文章

  1. BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Sta ...

  2. [BZOJ1076][SCOI2008]奖励关 状压dp

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3070  Solved: 1595[Submit][Statu ...

  3. bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2989  Solved: 1557[Submit][Statu ...

  4. bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块

    http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...

  5. BZOJ1076:[SCOI2008]奖励关(状压DP,期望)

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  6. [BZOJ1076][SCOI2008]奖励关解题报告|状压DP

    你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝 ...

  7. Bzoj1076 [SCOI2008]奖励关

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1935  Solved: 1053 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一 ...

  8. BZOJ1076: [SCOI2008]奖励关【状压DP+期望DP】

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  9. bzoj千题计划179:bzoj1237: [SCOI2008]配对

    http://www.lydsy.com/JudgeOnline/problem.php?id=1237 如果没有相同的数不能配对的限制 那就是排好序后 Σ abs(ai-bi) 相同的数不能配对 交 ...

随机推荐

  1. Synchronous/Asynchronous:任务的同步异步,以及asynchronous callback异步回调

    两个线程执行任务有同步和异步之分,看了Quora上的一些问答有了更深的认识. When you execute something synchronously, you wait for it to ...

  2. Asp.Net_<asp:RadioButtonList

       <asp:RadioButtonList runat="server" ID="RadioButtonList1"  RepeatDirection ...

  3. Jupyter Notebook 工作空间 / 默认路径 的设置方式

    Jupyter notebook 安装后,启动后,默认的工作空间是当前用户目录.为了方便对文档进行管理,往往需要自行设置工作空间. 下面介绍两种亲试有效的工作空间设置方法. 1.修改快捷方式 对 Ju ...

  4. leetcode刷题笔记258 各位相加

    题目描述: 给一个非负整数 num,反复添加所有的数字,直到结果只有一个数字. 例如: 设定 num = 38,过程就像: 3 + 8 = 11, 1 + 1 = 2. 由于 2 只有1个数字,所以返 ...

  5. thinkphp3.2 批量添加数据

    这是我遇到的thinkphp3.2 当中最让我无语的坑 批量添加数据有个方法是 addAll() 这个方法一定要注意数组的键名,一定要整齐!!! 可以在存入数据前,用ksort()方法将数组的键名排序 ...

  6. SimpleDateFormat的一些常用用法

    /** SimpleDateFormat函数语法: G 年代标志符 y 年 M 月 d 日 h 时 在上午或下午 (1~12) H 时 在一天中 (0~23) m 分 s 秒 S 毫秒 E 星期 D ...

  7. (第十二周)Bug修正报告

    根据Debug周各组找出的Bug,现做出如下说明: Bug: 一.天天向上团队 看到的现象:当食物链长度很长时,最长链显示不全.如下图: 期待的现象:当食物链过长时,食物链可以自动换行. 二者的差异: ...

  8. LINUX内核分析第一周学习总结——计算机是如何工作的

    LINUX内核分析第一周学习总结——计算机是如何工作的 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course/ ...

  9. Answer My Questions

    回答自己的问题,真棒!断电让自己的工作重来.真棒! 阅读以前自己的博客,发现问题都已经有了答案. (1).想要成为一名专业的软件工程师,首先得是有相关的资格证书,这个可以通过软考获得.然后在职场中锻炼 ...

  10. jira 插件介绍地址

    1. 官方的 介绍地址 http://confluence.gjingao.com/pages/viewpage.action?pageId=328170 序号 插件名称 功能概要 供应商 资源 10 ...