OpenGL ES 2.0 Shader 调试新思路(二): 做一个可用的原型

目录

背景介绍

请参考前文OpenGL ES 2.0 Shader 调试新思路(一): 改变提问方式

优化 ledChar 函数

前文中我们写了一个可以用来显示 1~0 10个数字字型的函数, 不过回头看看, 发现这个函数有些不太好阅读, 为方便讨论, 把该函数的代码拷贝在下面:

void ledChar(int,float,float,float,float);

// 构造数字
void ledChar(int n, float xa,float xb, float ya, float yb){
float x = vTexCoord.x;
float y = vTexCoord.y;
float x1 = xa;
float x2 = xa+xb;
float y1 = ya;
float y2 = ya+yb;
float ox = (x2+x1)/2.0;
float oy = (y2+y1)/2.0;
float dx = (x2-x1)/10.0;
float dy = (y2-y1)/10.0;
float b = (x2-x1)/20.0;
int num = n; // 设定调试区显示范围
if(x >= x1 && x <= x2 && y >= y1 && y <= y2) {
// 设置调试区背景色
gl_FragColor = vec4(0.2,0.2,0.8,.5);
// 分别绘制出 LED 形式的数字 1~0
if((num==1 && (x > x2-dx)) ||
(num==2 && ((y > y2-dy) || (x > x2-dx && y > oy-dy/2.0) || (y > oy-dy/2.0 && y < oy+dy/2.0) || (x < x1+dx && y < oy+dy/2.0) || (y < y1+dy))) ||
(num==3 && ((y > y2-dy) || (x > x2-dx) || (y > oy-dy/2.0 && y < oy+dy/2.0) || (y < y1+dy))) ||
(num==4 && ((x < x1+dx && y > oy-dy/2.0) ||(x > x2-dx) || (y > oy-dy/2.0 && y < oy+dy/2.0))) ||
(num==5 && ((y > y2-dy) || (x < x1+dx && y > oy-dy/2.0)|| (y > oy-dy/2.0 && y < oy+dy/2.0) || (x>x2-dx && y <oy-dy/2.0) || (y<y1+dy))) ||
(num==6 && ((y > y2-dy) || (x < x1+dx)|| (y > oy-dy/2.0 && y < oy+dy/2.0) || (x>x2-dx && y <oy-dy/2.0) || (y<y1+dy))) ||
(num==7 && ((y > y2-dy) || (x > x2-dx))) ||
(num==8 && ((y > y2-dy) || (x < x1+dx)|| (y > oy-dy/2.0 && y < oy+dy/2.0) || (x>x2-dx) || (y<y1+dy))) ||
(num==9 && ((y > y2-dy) || (x < x1+dx && y > oy-dy/2.0)||(y > oy-dy/2.0 && y < oy+dy/2.0)|| (x>x2-dx) || (y<y1+dy))) ||
(num==0 && ((y > y2-dy) || (x < x1+dx) || (x>x2-dx) || (y<y1+dy)))
)
{
gl_FragColor = vec4(0,1,0,.5);
}
}
}

代码完成后, 看着复杂的判断条件, 参差不齐的格式, 觉得不太好阅读, 忽然想到另一种实现 LED 字型的算法, 我们上面的算法是计算7段数码管每段的坐标范围, 然后绘制, 最多需要绘制5段(数字2,5,6,8,9), 判断语句写起来比较长, 其实我们可以反其道而行之, 意思就是说不画数字笔画, 改画数字笔画间的矩形, 因为仔细分析一下每个数字字型, 就会发现每个数字都可以用1个或2个小矩形分割出来, 上个示意图, 第一个示意图是传统的绘制方式, 第二个示意图是我们刚刚想到的用"矩形掩码", 或者叫"蒙版", 总之就这个意思:

传统LED数字绘制原理图 VS. 新想到的利用"矩形掩码"绘制原理图:

截图:

为了方便起见, 写了一个计算矩形区域的辅助函数 inRect, 我们把新写的函数命名为 ledRectChar, 代码如下:

float x = vTexCoord.x;
float y = vTexCoord.y; void ledRectChar(int,float,float,float,float);
bool inRect(float,float,float,float); bool inRect(float x1,float x2, float y1, float y2){
if(x>x1 && x<x2 && y>y1 && y<y2) { return true; } else { return false; }
} void ledRectChar(int n, float xa,float xb, float ya, float yb){
float x1 = xa;
float x2 = xa+xb;
float y1 = ya;
float y2 = ya+yb;
float ox = (x2+x1)/2.0;
float oy = (y2+y1)/2.0;
float dx = (x2-x1)/10.0;
float dy = (y2-y1)/10.0;
float b = (x2-x1)/20.0;
int num = n; // 设定调试区显示范围
if(x >= x1 && x <= x2 && y >= y1 && y <= y2) {
// 设置调试区背景色为绿色
gl_FragColor = vec4(0.2,1.0,0.2,1.0);
// 分别绘制出 LED 形式的数字 1~0 , 用黑色绘制1个或2个矩形,由矩形以外的绿色区域组成字型
if((num==1 && (inRect(x1,ox-dx,y1,y2) || inRect(ox+dx,x2,y1,y2))) ||
(num==2 && (inRect(x1,x2-dx,oy+dy/2.0,y2-dy) || inRect(x1+dx,x2,y1+dy,oy-dy/2.0))) ||
(num==3 && (inRect(x1,x2-dx,oy+dy/2.0,y2-dy) || inRect(x1,x2-dx,y1+dy,oy-dy/2.0))) ||
(num==4 && (inRect(x1+dx,x2-dx,oy+dy/2.0,y2) || inRect(x1,x2-dx,y1,oy-dy/2.0))) ||
(num==5 && (inRect(x1+dx,x2,oy+dy/2.0,y2-dy) || inRect(x1,x2-dx,y1+dy,oy-dy/2.0))) ||
(num==6 && (inRect(x1+dx,x2,oy+dy/2.0,y2-dy) || inRect(x1+dx,x2-dx,y1+dy,oy-dy))) ||
(num==7 && inRect(x1,x2-dx,y1,y2-dy)) ||
(num==8 && (inRect(x1+dx,x2-dx,oy+dy/2.0,y2-dy) || inRect(x1+dx,x2-dx,y1+dy,oy-dy/2.0))) ||
(num==9 && (inRect(x1+dx,x2-dx,oy+dy/2.0,y2-dy) || inRect(x1,x2-dx,y1+dy,oy-dy/2.0))) ||
(num==0 && inRect(x1+dx,x2-dx,y1+dy,y2-dy))
)
{
gl_FragColor = vec4(0,0,0,.5);
}
}
}

这样考虑角度一变, 就发现其实用矩形在这种场景下更简单, 而且代码看起来清楚多了, 数字 70 用了一个矩形, 其他数字都用两个矩形就"掩"出来了(其实1用1个矩形就可以, 用两个是为了更美观一些)

.

另外, 貌似使用了太多的函数, 导致效率不高, 其实我也很乐意把这些函数全部都写成宏, 只是不太会写带参数的宏, 试了半天 inRect, 比如

// ! 说明, 这是错的, 编译不通过
#define inRect(x1,x2,y1,y2) x>(x1)&&x<(x2)&&y>(y1)&&y<(y2)?true:false

结果老是有错误, 就没继续研究了(后来仔细研究了 OpenGL Shader Language 之后才发现它不允许带参数的宏).

改进为可用的原型

用了改进版的 ledRectChar 作为基础函数, 我们开始考虑实际的使用场景, 实际编程过程中 shader 用到的变量的值肯定不会只是一个一位整数, 所以我们首先得考虑多位整数, 其次还要考虑浮点数, 另外还要考虑负数的表示, 最后要考虑的是表示范围和准确度(这点最麻烦, 本文只是大致说一下).

列一下后续的需求清单:

  • 多位正整数
  • 多位浮点数
  • 负数
  • 给出表示范围和准确度

接下来我们一项一项来

表示多位正整数

在我发出前文 OpenGL ES 2.0 Shader 调试新思路(一): 改变提问方式 后, 论坛上的一位朋友 @dave1707 用我们的基础函数 ledChar 写了一段表示多位正整数的代码, 并建议我把它完善一下, 首先表示感谢, 他的代码如下:

highp int nbr=8293;   // number to display

float m=0.96;
while (nbr>0)
{ m=m-0.015;
int nn=nbr-((nbr/10)*10);
ledChar(nn, m, 0.01, 0.96, 0.01);
nbr=nbr/10;
}

也就是说多位正整数的需求已经解决, 这里存在一个存储精度的问题, 也就是当要表示的数字大于某个值时就会导致溢出, 这种情况我们不做太多处理, 主要是因为这里处理起来比较麻烦, 我们会在注释中说明本函数适用的数字范围.

接下来我们会在他的代码的基础上继续前进, 我们先分析一下 多位浮点数负数 这两个需求, 发现它们一个需要 小数点, 一个需要负号, 也就是说在我们的基础函数 ledRectChar 中需要新增两种字型, 那么我们先来升级一下基础函数.

新增的两种字型:小数点和负号

先来处理小数点, 前面用变量 num 的值 1~0 分别表示 1~0 这10个数字的字型, 那么新增的小数点和负号分别用数字 1011 表示, 然后用"矩形掩码"把它们的字型画出.

增加这么两行判断:

(num==10 && (inRect(x1,x2,oy-dy,y2) || inRect(x1,ox-dx*2.0,y1,oy-dy) || inRect(ox+dx*2.0,x2,y1,oy-dy) )) ||
(num==11 && (inRect(x1,x2,oy+dy,y2) || inRect(x1,x2,y1,oy-dy)))

更新后的 ledRectChar 函数如下:

void ledRectChar(int n, float xa,float xb, float ya, float yb){
float x1 = xa;
float x2 = xa+xb;
float y1 = ya;
float y2 = ya+yb;
float ox = (x2+x1)/2.0;
float oy = (y2+y1)/2.0;
float dx = (x2-x1)/10.0;
float dy = (y2-y1)/10.0;
float b = (x2-x1)/20.0;
int num = n; // 设定调试区显示范围
if(x >= x1 && x <= x2 && y >= y1 && y <= y2) {
// 设置调试区背景色
gl_FragColor = vec4(0.2,1.0,0.2,1.0);
// 分别绘制出 LED 形式的数字 1~0 , 用黑色绘制1个或2个矩形,由矩形以外的绿色区域组成字型
if((num==1 && (inRect(x1,ox-dx,y1,y2) || inRect(ox+dx,x2,y1,y2))) ||
(num==2 && (inRect(x1,x2-dx,oy+dy/2.0,y2-dy) || inRect(x1+dx,x2,y1+dy,oy-dy/2.0))) ||
(num==3 && (inRect(x1,x2-dx,oy+dy/2.0,y2-dy) || inRect(x1,x2-dx,y1+dy,oy-dy/2.0))) ||
(num==4 && (inRect(x1+dx,x2-dx,oy+dy/2.0,y2) || inRect(x1,x2-dx,y1,oy-dy/2.0))) ||
(num==5 && (inRect(x1+dx,x2,oy+dy/2.0,y2-dy) || inRect(x1,x2-dx,y1+dy,oy-dy/2.0))) ||
(num==6 && (inRect(x1+dx,x2,oy+dy/2.0,y2-dy) || inRect(x1+dx,x2-dx,y1+dy,oy-dy))) ||
(num==7 && inRect(x1,x2-dx,y1,y2-dy)) ||
(num==8 && (inRect(x1+dx,x2-dx,oy+dy/2.0,y2-dy) || inRect(x1+dx,x2-dx,y1+dy,oy-dy/2.0))) ||
(num==9 && (inRect(x1+dx,x2-dx,oy+dy/2.0,y2-dy) || inRect(x1,x2-dx,y1+dy,oy-dy/2.0))) ||
(num==0 && inRect(x1+dx,x2-dx,y1+dy,y2-dy)) ||
// 传入10则绘制小数点, 传入11则绘制负号, 传入12则清空
(num==10 && (inRect(x1,x2,oy-dy,y2) || inRect(x1,ox-dx*2.0,y1,oy-dy) || inRect(ox+dx*2.0,x2,y1,oy-dy) )) ||
(num==11 && (inRect(x1,x2,oy+dy,y2) || inRect(x1,x2,y1,oy-dy))) ||
(num==12)
)
{
gl_FragColor = vec4(0,0,0,.5);
}
}
}

浮点数和负数

调试通过, OK, 现在基础函数已经可以提供全部字型了, 我们接着来实现浮点数的表示, 基于前面 @dave1707 的代码, 把浮点数先取绝对值(为了避免要区分正负数分别对应的floorceil两种取整方式), 再把绝对值分离出整数部分和小数部分, 然后都当做整数来处理, 按个十百千万...位插入一个20位的数组, 整数部分和小数部分中间插一个小数点所对应的数字10, 最后判断一下是不是负数, 是的话就插入负号所对应的数字11, 还有就是开始要初始化一下数组, 初始值置为 12(在基础函数中对应黑色背景), 否则数组默认值都是 0, 显示时会在空白的数字位全部显示为 0, 影响观感, 代码如下:

void showFloat(float f){
int myNum[20];
int k = 0;
int iPart = int(floor(abs(f)));
int fPart = int(fract(abs(f))*100000.0);
float m=0.86; // 初始化数组,全部置为代表黑色的12
for(int i=0; i<20; i++){
myNum[i] = 12;
} // 插入小数部分
while (fPart>0)
{
// 从个位开始, 依次取出个位,十位,百位,千位...的数字值
myNum[k++]=fPart-((fPart/10)*10);
fPart=fPart/10;
} // 如果是0
if(f==0.0){myNum[k++] = 0;} // 插入小数点
myNum[k++] = 10; // 插入整数部分
while (iPart>0)
{
myNum[k++]=iPart-((iPart/10)*10);
iPart=iPart/10;
} // 如果是负数,则插入代表负号的11
if(f<0.0) { myNum[k++]=11;} // 循环输出数字数组
for(int i=0; i<20; i++)
{
m = m-0.03;
ledRectChar(myNum[i], m, 0.02, 0.6, 0.15);
} }

很好, 调试通过, 基本搞定, 好像忘记处理负整数了, 为了避免麻烦, 我们可以建议用户把负整数进行强制类型转换为负浮点数, 就可以直接使用我们的 showFloat 函数了, 具体来说就是这么调用:

  • showFloat(float(-1234));

显示截图如下:

显示范围和准确度

最后说一下这个不得不说的问题, 很多编程语言都需要考虑一个数值表示范围, 尤其是浮点数, 比如 shader 里的浮点数就是数值越大, 小数位越少, 而且这时比较小的小数会被舍掉, 我们为小数部分留了5位, 整数部分留了13位, 当然, 如果你需要调试更大的数, 也可以自己修改数组的大小--不过好像 shader 中太大的数会返回溢出, 大家根据自己的需求看着办吧.

看看这几个截图:

  • showFloat(2097152.411);

  • showFloat(2097152.11);

在此不得不赞叹一下我大 Common Lisp 的强悍, 毕竟能直接计算 1024^1024 (1024的1024次方)的语言唯有我大 Common Lisp 了, 看看:

截图:

可用原型的完整代码

现在我们基本完成一个可用原型了, 虽然效率不怎么样, FPS甚至降低了20倍(从60降低到3), 但是首先我们解决了有没有的问题, 好不好的问题就留待后面解决了, 如果有需求那就继续优化好了, 下面给出可用原型的全部代码:

shader代码

myShader = {
vsBase = [[
// vertex shader 代码
uniform mat4 modelViewProjection;
uniform vec2 uResolution; attribute vec4 position;
attribute vec4 color;
attribute vec2 texCoord; varying lowp vec4 vColor;
varying highp vec2 vTexCoord; void main() {
vColor=color;
vTexCoord = texCoord; gl_Position = modelViewProjection * position;
}
]],
fsBase = [[
// fragment shader 代码
precision highp float;
uniform lowp sampler2D texture;
varying lowp vec4 vColor;
varying highp vec2 vTexCoord; float x = vTexCoord.x;
float y = vTexCoord.y; void ledChar(int,float,float,float,float);
void ledRectChar(int,float,float,float,float);
void showInt(int);
void showFloat(float);
bool inRect(float,float,float,float); void main() {
lowp vec4 col = texture2D( texture, vTexCoord ) * vColor; // 默认全部设置为黑色
gl_FragColor = vec4(.1,.1,.1,1); showFloat(-.1111111);
//showFloat(float(-9765)); } void showFloat(float f){
int myNum[20];
int k = 0;
int iPart = int(floor(abs(f)));
int fPart = int(fract(abs(f))*100000.0);
float m=0.86; // 初始化数组,全部置为代表黑色的12
for(int i=0; i<20; i++){
myNum[i] = 12;
} // 插入小数部分
while (fPart>0)
{
// 从个位开始, 依次取出个位,十位,百位,千位...的数字值
myNum[k++]=fPart-((fPart/10)*10);
fPart=fPart/10;
} // 如果是0
if(f==0.0){myNum[k++] = 0;} // 插入小数点
myNum[k++] = 10; // 插入整数部分
while (iPart>0)
{
myNum[k++]=iPart-((iPart/10)*10);
iPart=iPart/10;
} // 如果是负数,则插入代表负号的11
if(f<0.0) { myNum[k++]=11;} // 循环输出数字数组
for(int i=0; i<20; i++)
{
m = m-0.03;
ledRectChar(myNum[i], m, 0.02, 0.6, 0.15);
}
} bool inRect(float x1,float x2, float y1, float y2){
if(x>x1 && x<x2 && y>y1 && y<y2) { return true; } else { return false; }
} void ledRectChar(int n, float xa,float xb, float ya, float yb){
float x1 = xa;
float x2 = xa+xb;
float y1 = ya;
float y2 = ya+yb;
float ox = (x2+x1)/2.0;
float oy = (y2+y1)/2.0;
float dx = (x2-x1)/10.0;
float dy = (y2-y1)/10.0;
float b = (x2-x1)/20.0;
int num = n; // 设定调试区显示范围
if(x >= x1 && x <= x2 && y >= y1 && y <= y2) {
// 设置调试区背景色
gl_FragColor = vec4(0.2,1.0,0.2,1.0);
// 分别绘制出 LED 形式的数字 1~0 , 用黑色绘制1个或2个矩形,由矩形以外的绿色区域组成字型
if((num==1 && (inRect(x1,ox-dx,y1,y2) || inRect(ox+dx,x2,y1,y2))) ||
(num==2 && (inRect(x1,x2-dx,oy+dy/2.0,y2-dy) || inRect(x1+dx,x2,y1+dy,oy-dy/2.0))) ||
(num==3 && (inRect(x1,x2-dx,oy+dy/2.0,y2-dy) || inRect(x1,x2-dx,y1+dy,oy-dy/2.0))) ||
(num==4 && (inRect(x1+dx,x2-dx,oy+dy/2.0,y2) || inRect(x1,x2-dx,y1,oy-dy/2.0))) ||
(num==5 && (inRect(x1+dx,x2,oy+dy/2.0,y2-dy) || inRect(x1,x2-dx,y1+dy,oy-dy/2.0))) ||
(num==6 && (inRect(x1+dx,x2,oy+dy/2.0,y2-dy) || inRect(x1+dx,x2-dx,y1+dy,oy-dy))) ||
(num==7 && inRect(x1,x2-dx,y1,y2-dy)) ||
(num==8 && (inRect(x1+dx,x2-dx,oy+dy/2.0,y2-dy) || inRect(x1+dx,x2-dx,y1+dy,oy-dy/2.0))) ||
(num==9 && (inRect(x1+dx,x2-dx,oy+dy/2.0,y2-dy) || inRect(x1,x2-dx,y1+dy,oy-dy/2.0))) ||
(num==0 && inRect(x1+dx,x2-dx,y1+dy,y2-dy)) ||
// 传入10则绘制小数点, 传入11则绘制负号, 传入12则清空
(num==10 && (inRect(x1,x2,oy-dy,y2) || inRect(x1,ox-dx*2.0,y1,oy-dy) || inRect(ox+dx*2.0,x2,y1,oy-dy) )) ||
(num==11 && (inRect(x1,x2,oy+dy,y2) || inRect(x1,x2,y1,oy-dy))) ||
(num==12)
)
{
gl_FragColor = vec4(0,0,0,.5);
}
}
} ]]
}

配套Codea代码

-- Shader debug
displayMode(OVERLAY)
function setup()
m = mesh() m:addRect(WIDTH/2,HEIGHT/2,WIDTH,HEIGHT) m.shader = shader(myShader.vsBase,myShader.fsBase) -- m.texture = "Documents:univer"
m:setColors(color(220,200,200,255)) parameter.watch("m.shader.modelViewProjection")
parameter.watch("m.shader.uResolution")
parameter.watch("m.vertices[1]")
end function draw()
background(0)
m:draw()
end function touched(touch) end

后记

经过一番调试折腾, 终于完成一个刚刚能用的原型, 以后在 Codea 下调试 shader 程序起码有个工具勉强可用了. 当然, 这几个函数也可以用于调试其他平台的 shader 程序.

为了提高人类整体的工作效率, 我们后续会把这个原型发布到 Github 上, 以供其他需要观察 shader 内部变量的同学使用, 起个响亮的名字 ShaderDebugger:

Github 地址:ShaderDebugger

OpenGL ES 2.0 Shader 调试新思路(二): 做一个可用的原型的更多相关文章

  1. OpenGL ES 2.0 Shader 调试新思路(一): 改变提问方式

    OpenGL ES 2.0 Shader 调试新思路(一): 改变提问方式 --是什么(答案是具体值) VS 是不是(答案是布尔值) 目录 背景介绍 问题描述 Codea 是 iPad 上的一款很方便 ...

  2. OpenGL ES 2.0 shader开发

    1.创建一个shader容器 GLES20.glCreateShader(shaderType); 函数原型为: int glCreateShader (int type) 方法参数: GLES20. ...

  3. 梳理 Opengl ES 3.0 (二)剖析一个GLSL程序

    OpenGL ES shading language 3.0 也被称作 GLSL,是个 C风格的编程语言. Opengl ES 3.0内部有两种可编程处理单元,即Vertex processor和Fr ...

  4. OpenGL ES 2.0 渲染管线 学习笔记

    图中展示整个OpenGL ES 2.0可编程管线 图中Vertex Shader和Fragment Shader 是可编程管线: Vertex Array/Buffer objects 顶点数据来源, ...

  5. 【Android 应用开发】OpenGL ES 2.0 -- 制作 3D 彩色旋转三角形 - 顶点着色器 片元着色器 使用详解

    最近开始关注OpenGL ES 2.0 这是真正意义上的理解的第一个3D程序 , 从零开始学习 . 案例下载地址 : http://download.csdn.net/detail/han120201 ...

  6. OpenGL ES 3.0之Shading Language(八)

    每个OpenGL ES 3.0程序要求一个顶点着色器和一个片段着色器去渲染一个图形.着色器概念是API 的中心,本篇将介绍着色器语言部分包含下面几项 1.变量和变量类型 2.矢量和矩阵创建及选择 3. ...

  7. 基于Cocos2d-x学习OpenGL ES 2.0之多纹理

    没想到原文出了那么多错别字,实在对不起观众了.介绍opengl es 2.0的不多.相信介绍基于Cocos2d-x学习OpenGL ES 2.0之多纹理的,我是独此一家吧.~~ 子龙山人出了一个系列: ...

  8. OpenGL ES 2.0 -- 制作 3D 彩色旋转三角形 - 顶点着色器 片元着色器 使用详解

    最近开始关注OpenGL ES 2.0 这是真正意义上的理解的第一个3D程序 , 从零开始学习 . 案例下载地址 : http://download.csdn.net/detail/han120201 ...

  9. (OpenGL ES 2.0 Shading Language) attribute 、uniform 和 varying

    一:attribute .uniform 和 varying 都是glsl的变量的内存指示器(storage qualifiers),指明变量的内存特性 二:attribute attribute 是 ...

随机推荐

  1. JQuery快速入门-Ajax

    一.AJAX概述 概念:AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). 优点:通过在后台与服务器进行少量数据交换,AJAX ...

  2. Yeoman的好基友:Grunt

    grunt介绍 前端不能承受之痛 1.这是我们的生活 文件压缩:YUI Compressor.Google Closure 文件合并:fiddler + qzmin 文件校验:jshint 雪碧图:c ...

  3. python基础面试题

    函数1def foo(arg,li=[]): li.append(arg) return li list1 = foo(21) list2 = foo(11,[2]) list3 = foo(28) ...

  4. Java内存区域的划分和异常

    Java内存区域的划分和异常   运行时数据区域 JVM在运行Java程序时候会将内存划分为若干个不同的数据区域. 打开百度App,看更多美图 程序计数器 线程私有.可看作是当前线程所执行的字节码的行 ...

  5. PAT甲题题解-1040. Longest Symmetric String (25)-求最长回文子串

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789177.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  6. 桌面输入法评测报告 之 搜狗拼音输入法vs必应拼音输入法

    输入法是电脑用户不可或缺的软件,它几乎无时无刻不陪伴在使用者的身旁.一个优秀的输入法,应该满足客户对使用体验以及效率的需求.我们小队的任务便是对当今最为常用的两种输入法: 搜狗拼音输入法和必应拼音输入 ...

  7. c# 导出数据到excel

    直接上代码: private void button1_MouseDown(object sender, MouseEventArgs e) { if (e.Button == MouseButton ...

  8. linux 常用命令-变量命令

    想要的结果,有时候我们想使用上一句命令的执行结果,当然可以通过鼠标去复制粘贴,但是这样既不库又效率低,所以想能不能通过快捷键获取上一句命令的值执行结果呢,答案是不能,后来想如果能把执行结果存入变量那不 ...

  9. ElasticSearch搜索实例含高亮显示及搜索的特殊字符过滤

    应用说明见代码注解. 1.简单搜索实例展示: public void search() throws IOException { // 自定义集群结点名称 String clusterName = & ...

  10. 【iMooc】全面解析java注解

    在慕课上学习了一个关于java注解的课程,下面是笔记以及一些源码. Annotation——注解 1.JDK中的注解 JDK中包括下面三种注解: @Override:标记注解(marker annot ...