题目链接

bzoj4001: [TJOI2015]概率论

题解

生成函数+求导

设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\)

设\(f(x)\)表示\(n\)个节点的二叉树叶子节点的个数,\(f_0 = 0,f_1 = 1\)

那么\(ans = \frac{f_i}{g_i}\)

对于\(g_i\)

考虑有一颗\(n\)个点的二叉树,由于左右字数都是二叉树,枚举左右子树的点数

\[g_n = \sum_{i = 0}^{n - 1}g_ig_{n - i - 1}
\]

这就是卡特兰数,通项为\(\frac{C_{2n}^{n}}{n + 1}\)

对于\(f_i\)

枚举左右子树的大小,我们可以有\(g\)函数推出,由于左右对称,最后\(*2\)

\[f_n = 2\sum_{i = 0}^{n - 1}f_i*g_{n - i - 1}
\]

我们要找到\(f\)与\(h\)的关系

另\(G(x)\)为\(g\)的生成函数,\(F(x)\)为\(f\)的生成函数

\[G(x) = x G^2(x) + 1,F(x) = 2xF(x)G(x) + x
\]

对于\(G(x)\)他的封闭形式为\(\frac{1-\sqrt{1-4x}}{2x}\),(对于另外一根\(\sqrt{1-4x}\)展开后每一项都是是负的,而卡特兰数不是,舍去)

对\(F(x)\)得到\(F(x) = x * (1 - 4x)^{-\frac{1}{2}}\)

\[(xG(x))'=\frac 1{\sqrt{1-4x}}=\frac{F(x)}x
\]

\(xG(x)\)的每一项\(xg_nx^n = g_nx^{n +1}\)求导后变为\((n + 1)g_nx^n\),也就等于等式右边的\(\frac{f_{n + 1}x^{n + 1}}{x} = f_{n + 1}x^n\) 也就是说\(f_{n + 1} = (n+1)g_n\)即\(f_n=ng_{n-1}\)

带入\(g_n =\frac{C_{2n}^{n}}{n + 1}\)

化简得到

\[ans =\frac{n(n + 1)}{2(2n + 1)}
\]

代码

#include<bits/stdc++.h>
using namespace std;
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9')c = getchar();
while(c <= '9' && c >= '0')x = x * 10 + c - '0',c = getchar();
return x * f;
}
const int maxn = 1000005;
const int INF = 0x7fffffff; int main() {
double n;
cin >> n;
printf("%.9lf\n",n * (n + 1.0) / (4 * n -2));
return 0;
}

bzoj4001: [TJOI2015]概率论的更多相关文章

  1. BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)

    设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...

  2. BZOJ4001 [TJOI2015]概率论 【生成函数】

    题目链接 BZOJ4001 题解 Miskcoo 太神了,orz #include<algorithm> #include<iostream> #include<cstr ...

  3. BZOJ4001[TJOI2015]概率论——卡特兰数

    题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...

  4. 2018.12.31 bzoj4001: [TJOI2015]概率论(生成函数)

    传送门 生成函数好题. 题意简述:求nnn个点的树的叶子数期望值. 思路: 考虑fnf_nfn​表示nnn个节点的树的数量. 所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0) ...

  5. BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)

    Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...

  6. 【BZOJ4001】[TJOI2015]概率论(生成函数)

    [BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...

  7. 4001: [TJOI2015]概率论

    4001: [TJOI2015]概率论 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 262  Solved: 108[Submit][Status] ...

  8. [TJOI2015]概率论

    [TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...

  9. 【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论

    题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Ou ...

随机推荐

  1. python爬虫 scrapy3_ 安装指南

      安装指南 安装Scrapy 注解 请先阅读 平台安装指南. 下列的安装步骤假定您已经安装好下列程序: Python 2.7 Python Package: pip and setuptools. ...

  2. net.sf.json------json解析

    下载地址 [plain] view plain copy   本次使用版本:http://sourceforge.net/projects/json-lib/files/json-lib/json-l ...

  3. python常用模块-调用系统命令模块(subprocess)

    python常用模块-调用系统命令模块(subprocess) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. subproces基本上就是为了取代os.system和os.spaw ...

  4. 从简单类型到复杂类型的参数传递用例,以及传递简单string类型的解决办法

    一,简单类型的传值   比如 public Users Get(int id) ,它可以使用两种方式获取:   api/default/5 $.get("/api/default" ...

  5. C标准库函数中复杂的函数声明

    <signal.h> 中有一个复杂的函数声明.很叫人费解. void (*signal(int sig, void (*handler)(int)))(int); 我们按照向右看向左看的黄 ...

  6. iOS设置tableViewCell之间的间距(去掉UItableview headerview黏性)

    经常在项目中遇到自定义cell的情况,而且要求cell之间有间距,但是系统没有提供改变cell间距的方法,怎么办? 方法1:自定义cell的时候加一个背景View,使其距离contentView的上下 ...

  7. CentOS7 关闭防火墙和selinux

    本文将简单介绍在CentOS7上如何临时和永久关闭防火墙和selinux. 关闭防火墙 # 查看防火墙状态 [root@localhost ~]# systemctl status firewalld ...

  8. NOIP2016-D2-T2 蚯蚓(单调队列)

    构建三个单调队列(用STL),分别储存未切的蚯蚓,切后的第一段,切后的第二段,即可简单证明其单调性. 证明:设$q$为单调队列$\because a_1 \geqslant a_2 \geqslant ...

  9. (A - 整数划分 HYSBZ - 1263)(数组模拟大数乘法)

    题目链接:https://cn.vjudge.net/problem/HYSBZ-1263 题目大意:中文题目 具体思路:先进了能的拆成3,如果当前剩下的是4,就先不减去3,直接乘4,如果还剩2的话, ...

  10. 【API】文件操作编程基础-CreateFile、WriteFile、SetFilePointer

    1.说明 很多黑客工具的实现是通过对文件进行读写操作的,而文件读写操作实质也是对API函数的调用. 2.相关函数 CreateFile : 创建或打开文件或I/O设备.最常用的I/O设备如下:文件,文 ...