题目链接

bzoj4001: [TJOI2015]概率论

题解

生成函数+求导

设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\)

设\(f(x)\)表示\(n\)个节点的二叉树叶子节点的个数,\(f_0 = 0,f_1 = 1\)

那么\(ans = \frac{f_i}{g_i}\)

对于\(g_i\)

考虑有一颗\(n\)个点的二叉树,由于左右字数都是二叉树,枚举左右子树的点数

\[g_n = \sum_{i = 0}^{n - 1}g_ig_{n - i - 1}
\]

这就是卡特兰数,通项为\(\frac{C_{2n}^{n}}{n + 1}\)

对于\(f_i\)

枚举左右子树的大小,我们可以有\(g\)函数推出,由于左右对称,最后\(*2\)

\[f_n = 2\sum_{i = 0}^{n - 1}f_i*g_{n - i - 1}
\]

我们要找到\(f\)与\(h\)的关系

另\(G(x)\)为\(g\)的生成函数,\(F(x)\)为\(f\)的生成函数

\[G(x) = x G^2(x) + 1,F(x) = 2xF(x)G(x) + x
\]

对于\(G(x)\)他的封闭形式为\(\frac{1-\sqrt{1-4x}}{2x}\),(对于另外一根\(\sqrt{1-4x}\)展开后每一项都是是负的,而卡特兰数不是,舍去)

对\(F(x)\)得到\(F(x) = x * (1 - 4x)^{-\frac{1}{2}}\)

\[(xG(x))'=\frac 1{\sqrt{1-4x}}=\frac{F(x)}x
\]

\(xG(x)\)的每一项\(xg_nx^n = g_nx^{n +1}\)求导后变为\((n + 1)g_nx^n\),也就等于等式右边的\(\frac{f_{n + 1}x^{n + 1}}{x} = f_{n + 1}x^n\) 也就是说\(f_{n + 1} = (n+1)g_n\)即\(f_n=ng_{n-1}\)

带入\(g_n =\frac{C_{2n}^{n}}{n + 1}\)

化简得到

\[ans =\frac{n(n + 1)}{2(2n + 1)}
\]

代码

#include<bits/stdc++.h>
using namespace std;
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9')c = getchar();
while(c <= '9' && c >= '0')x = x * 10 + c - '0',c = getchar();
return x * f;
}
const int maxn = 1000005;
const int INF = 0x7fffffff; int main() {
double n;
cin >> n;
printf("%.9lf\n",n * (n + 1.0) / (4 * n -2));
return 0;
}

bzoj4001: [TJOI2015]概率论的更多相关文章

  1. BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)

    设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...

  2. BZOJ4001 [TJOI2015]概率论 【生成函数】

    题目链接 BZOJ4001 题解 Miskcoo 太神了,orz #include<algorithm> #include<iostream> #include<cstr ...

  3. BZOJ4001[TJOI2015]概率论——卡特兰数

    题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...

  4. 2018.12.31 bzoj4001: [TJOI2015]概率论(生成函数)

    传送门 生成函数好题. 题意简述:求nnn个点的树的叶子数期望值. 思路: 考虑fnf_nfn​表示nnn个节点的树的数量. 所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0) ...

  5. BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)

    Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...

  6. 【BZOJ4001】[TJOI2015]概率论(生成函数)

    [BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...

  7. 4001: [TJOI2015]概率论

    4001: [TJOI2015]概率论 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 262  Solved: 108[Submit][Status] ...

  8. [TJOI2015]概率论

    [TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...

  9. 【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论

    题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Ou ...

随机推荐

  1. C语言复习---打印菱形

    #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <math ...

  2. hdu 5181 numbers

    http://acm.hdu.edu.cn/showproblem.php?pid=5181 题意: 有一个栈,其中有n个数1~n按顺序依次进入栈顶,在某个时刻弹出. 其中m个限制,形如数字A必须在数 ...

  3. CF&&CC百套计划4 Codeforces Round #276 (Div. 1) A. Bits

    http://codeforces.com/contest/484/problem/A 题意: 询问[a,b]中二进制位1最多且最小的数 贪心,假设开始每一位都是1 从高位i开始枚举, 如果当前数&g ...

  4. Here’s just a fraction of what you can do with linear algebra

    Here’s just a fraction of what you can do with linear algebra The next time someone wonders what the ...

  5. 控制台console对象常用的一些方法

    console.log():调试中最常用的方法,用于在控制台窗口显示信息. console.log(123); console.warn():输出信息时,在最前面加一个黄色三角,表示警告 consol ...

  6. Javascript中与Scroll有关的方法

    这块确实太乱了,被兼容搞的简直快要晕死,默默地总结下... 与scroll相关的方法 4个window对象下:scrollX.scrollY.scrollTo.scroll(作用和scrollTo一样 ...

  7. 20155328 2016-2017-2 《Java程序设计》第六周 学习总结

    20155328 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 根据不同的分类标准,IO可分为:输入/输出流:字节/字符流:节点/处理流. 在不使用Inpu ...

  8. 大数据系列之分布式计算批处理引擎MapReduce实践-排序

    清明刚过,该来学习点新的知识点了. 上次说到关于MapReduce对于文本中词频的统计使用WordCount.如果还有同学不熟悉的可以参考博文大数据系列之分布式计算批处理引擎MapReduce实践. ...

  9. Python学习笔记:算法的重要性

    今日看了一个基础的教程<8分钟学会一个算法>,偶然间看到一个很简单的例子,仅当记录一下. 题目:已知a+b+c=1000,且a^2+b^2=c^2,求a,b,c的所有自然数解? #### ...

  10. linux内核内存分配(三、虚拟内存管理)

    在分析虚拟内存管理前要先看下linux内核内存的具体分配我開始就是困在这个地方.对内核内存的分类不是非常清晰.我摘录当中的一段: 内核内存地址 ============================ ...