bzoj4001: [TJOI2015]概率论
题目链接
题解
生成函数+求导
设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\)
设\(f(x)\)表示\(n\)个节点的二叉树叶子节点的个数,\(f_0 = 0,f_1 = 1\)
那么\(ans = \frac{f_i}{g_i}\)
对于\(g_i\)
考虑有一颗\(n\)个点的二叉树,由于左右字数都是二叉树,枚举左右子树的点数
\]
这就是卡特兰数,通项为\(\frac{C_{2n}^{n}}{n + 1}\)
对于\(f_i\)
枚举左右子树的大小,我们可以有\(g\)函数推出,由于左右对称,最后\(*2\)
\]
我们要找到\(f\)与\(h\)的关系
另\(G(x)\)为\(g\)的生成函数,\(F(x)\)为\(f\)的生成函数
\]
对于\(G(x)\)他的封闭形式为\(\frac{1-\sqrt{1-4x}}{2x}\),(对于另外一根\(\sqrt{1-4x}\)展开后每一项都是是负的,而卡特兰数不是,舍去)
对\(F(x)\)得到\(F(x) = x * (1 - 4x)^{-\frac{1}{2}}\)
\]
\(xG(x)\)的每一项\(xg_nx^n = g_nx^{n +1}\)求导后变为\((n + 1)g_nx^n\),也就等于等式右边的\(\frac{f_{n + 1}x^{n + 1}}{x} = f_{n + 1}x^n\) 也就是说\(f_{n + 1} = (n+1)g_n\)即\(f_n=ng_{n-1}\)
带入\(g_n =\frac{C_{2n}^{n}}{n + 1}\)
化简得到
\]
代码
#include<bits/stdc++.h>
using namespace std;
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9')c = getchar();
while(c <= '9' && c >= '0')x = x * 10 + c - '0',c = getchar();
return x * f;
}
const int maxn = 1000005;
const int INF = 0x7fffffff;
int main() {
double n;
cin >> n;
printf("%.9lf\n",n * (n + 1.0) / (4 * n -2));
return 0;
}
bzoj4001: [TJOI2015]概率论的更多相关文章
- BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...
- BZOJ4001 [TJOI2015]概率论 【生成函数】
题目链接 BZOJ4001 题解 Miskcoo 太神了,orz #include<algorithm> #include<iostream> #include<cstr ...
- BZOJ4001[TJOI2015]概率论——卡特兰数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...
- 2018.12.31 bzoj4001: [TJOI2015]概率论(生成函数)
传送门 生成函数好题. 题意简述:求nnn个点的树的叶子数期望值. 思路: 考虑fnf_nfn表示nnn个节点的树的数量. 所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0) ...
- BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)
Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- 4001: [TJOI2015]概率论
4001: [TJOI2015]概率论 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 262 Solved: 108[Submit][Status] ...
- [TJOI2015]概率论
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...
- 【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论
题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Ou ...
随机推荐
- OpenStack 图形化服务 Horizon使用(十三)
构建一台云主机 上图中Count可以选择同时创建多台 最终“启动实例” 创建成功后,可以进入控制台,操作新建云主机
- Angular的依赖注入(依赖反转)原理说明
依赖注入(依赖反转)意思是由函数决定要引入什么样的依赖: let mod = angular.module('test',[]); mod.controller('test_c',function($ ...
- 函数和常用模块【day06】:模块特殊变量(十四)
from test import test ''' __mame__ # 当前文件为主文件是等于__main__.用于调用时不执行一些命令 __file__ # 当前文件的路径,相对路径 __cach ...
- bzoj千题计划207:bzoj1879: [Sdoi2009]Bill的挑战
http://www.lydsy.com/JudgeOnline/problem.php?id=1879 f[i][j] 表示匹配了i个字符,匹配字符串的状态为j的方案数 枚举下一个字符是什么 计算加 ...
- htm、html、shtml网页区别
htm.html.shtml网页区别 html或者htm是一种静态的页面格式,也就是说不需要服务器解析其中的脚本,或者说里面没有服务器端执行的脚本,而shtml或者shtm由于它基于SSI技术,当有服 ...
- pandas重置索引的几种方法探究
pandas重置索引的几种方法探究 reset_index() reindex() set_index() 函数名字看起来非常有趣吧! 不仅如此. 需要探究. http://nbviewer.jupy ...
- asp.net将ppt文档转换成pdf
一.添加引用 using Microsoft.Office.Core;using Microsoft.Office.Interop.PowerPoint; 二.转换方法 C# 代码 复制 // ...
- snmp 简单的网络管理协议
snmp snmptranslate . # 查看映射关系 DISMAN-EVENT-MIB::sysUpTimeInstance snmpdf -v -c public localhost # SN ...
- [转]避免头文件重复包含以及#ifndef 与 #program once 的区别
为了避免同一个文件被include多次,C/C++中有两种方式,一种是#ifndef方式,一种是#pragma once方式.在能够支持这两种方式的编译器上,二者并没有太大的区别,但是两者仍然还是有一 ...
- Quartus II 破解教程—FPGA入门教程【钛白Logic】
这一节主要说明如何破解Quartus II 13.1.首先找到我们提供的破解工具,这里我们的电脑是64位的,所以使用64位破解器.如下图. 第一步:将破解工具拷贝到安装目录下“D:\altera\13 ...