Minimum Sum LCM UVA - 10791(分解质因子)
对于一个数n 设它有两个不是互质的因子a和b 即lcm(a,b) = n 且gcd为a和b的最大公约数
则n = a/gcd * b;
因为a/gcd 与 b 的最大公约数也是n
且 a/gcd + b < a + b
又因为a/gcd 与 b 互质 所以n的最小的因子和为 所有质因子的和
同理推广到多个质因子
由算术基本定理求出所有的质因子
则 nut = 所有质因子 ^ 个数 的和 自己想一想为什么把。。。
注意n为1时
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
LL primes[maxn], vis[maxn];
int ans;
void init()
{
mem(vis, );
ans = ;
for(int i=; i<maxn; i++)
if(!vis[i])
{
primes[ans++] = i;
for(LL j=(LL)i*i; j<maxn; j+=i)
vis[j] = ;
}
} LL qpow(LL a, LL b)
{
LL res = ;
while(b)
{
if(b & ) res = res * a;
a = a * a;
b >>= ;
}
return res;
} int main()
{
LL n;
init();
int kase = ;
while(cin>> n && n)
{
LL temp = n;
LL nut = ;
int cnt = ;
for(int i=; i<ans && primes[i]*primes[i] <= n; i++)
{
LL cnt2 = ;
while(n % primes[i] == )
{
n /= primes[i];
cnt2 *= primes[i];
}
if(cnt2 > )
{
nut += cnt2;
}
}
if(n > )
{
nut += n;
}
if(nut == temp)
nut++;
if(temp == )
nut += ;
printf("Case %d: %lld\n",++kase, nut); } return ;
}
Minimum Sum LCM UVA - 10791(分解质因子)的更多相关文章
- 唯一分解定理(以Minimun Sum LCM UVa 10791为例)
唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...
- UVA 10791 Minimum Sum LCM(分解质因数)
最大公倍数的最小和 题意: 给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 那么找出一个序列,使他们的和最小. 分析: 一系列数字a1,a2,a3 ...
- UVA.10791 Minimum Sum LCM (唯一分解定理)
UVA.10791 Minimum Sum LCM (唯一分解定理) 题意分析 也是利用唯一分解定理,但是要注意,分解的时候要循环(sqrt(num+1))次,并要对最后的num结果进行判断. 代码总 ...
- HDU 4497 GCD and LCM(分解质因子+排列组合)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...
- UVA 10780 Again Prime? No Time. 分解质因子
The problem statement is very easy. Given a number n you have to determine the largest power of m,no ...
- Minimum Sum LCM(uva10791+和最小的LCM+推理)
L - Minimum Sum LCM Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submi ...
- F - Minimum Sum LCM
LCM (Least Common Multiple) of a set of integers is defined as the minimum number, which is a multip ...
- hdu6237 分解质因子
题意:给一堆石子,每次移动一颗到另一堆,要求最小次数使得,所有石子数gcd>1 题解:枚举所有质因子,然后找次数最小的那一个,统计次数时,我们可以事先记录下每堆石子余质因子 的和,对所有石子取余 ...
- NYOJ-476谁是英雄,分解质因子求约数个数!
谁是英雄 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 十个数学家(编号0-9)乘气球飞行在太平洋上空.当横越赤道时,他们决定庆祝一下这一壮举.于是他们开了一瓶香槟.不 ...
随机推荐
- day77
昨日回顾: 批量插入数据: -queryset的方法:bulk_create(对象列表,数字(一次插入多少)) 分页器: from django.core.paginator import ...
- C# 分部方法partial
定义:使用partial关键字构建分部类定义.允许在一个文件中构建方法原型,而在另一个文件中实现. 1)分部方法只可以定义在分部类中 2)分部方法必须返回void 3)分部方法可以是静态的或实例级别的 ...
- 微信小程序开发 [06] 一些补充的知识点
0.写在前面的话 前几章的内容串联起来,基本上已经能写比较基础的小程序页面逻辑了,当然,wxml和wxss的我并没有写,因为前端我也并不擅长.这个章节,准备随便叨叨,然后补充一些之前没有提到的基础知识 ...
- odoo之ERP系统
odoo大纲 第一部分:数据库postgressql 大象 第二部分:ORM(API) 第三部分:客户端 用python软件写: .py文件 包含两部分:1.自定义部分,由自己写,定义类和功能. .继 ...
- [Usaco2012 Dec]First! BZOJ3012
分析: 其实我们可以很容易的想到,如果一个串是另一个串的子串,那么必定长的那个串不可能是字典序最小的串.其次,如果一个串为了使他成为字典序最小的串儿出现了矛盾的情况,那么也不可能是字典序最小的串.那么 ...
- struts2_maven_learning
以下为学习maven struts2 的学习过程,现记录如下. 1.创建一个完善的maven程序 maven:(jar) 1)maven project 2)facet 3)pom.xml,depen ...
- CodeForces-1155D Beautiful Array
Description You are given an array \(a\) consisting of \(n\) integers. Beauty of array is the maximu ...
- 测试leader职责
一. 负责软件产品/项目测试工作的组织 参加软件产品开发前的需求调研和分析 根据需求规格说明书,概要设计和开发计划编写项目总体测试计划,详细测试计划,测试大纲和测试文档结构表[测试计划 a.已上线产品 ...
- Asp.net MVC Razor常见问题及解决方法(转载>云中客)
没有经验的童鞋就是这样磕磕碰碰出来的经验. 1,Datatype的错误提示消息无法自定义 这也许是Asp.net MVC的一个Bug.ViewModel中定义了DataType为Date字段: 1 2 ...
- UE4添加植被Foliage Type
在UE4中的地形渲染上不可避免的需要添加植被,而如果采取手动添加StaticMesh植被的方式则会浪费大量的时间精力. UE4提供了一种批量添加地面植被类型的方式Foliage Type.在编辑器内容 ...