2018.10.27 bzoj3209: 花神的数论题(数位dp)
传送门
数位dpdpdp经典题。
题面已经暗示了我们按照二进制位来数位dpdpdp。
直接dpdpdp多少个数有111个111,222个111,333个111…,
然后快速幂算就行了。
于是我们枚举前几位跟nnn相同,后面比nnn小的方案数。
这个显然是可以用组合数算的。
注意nnn自己的也要算进贡献。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=10000007;
ll n,C[65][65],ans=1,cnt[65];
int len,pre;
inline ll ksm(ll x,ll p){ll ret=1;for(;p;p>>=1,x=x*x%mod)if(p&1)ret=ret*x%mod;return ret;}
int main(){
cin>>n;
for(int i=0;i<=60;++i){
C[i][0]=1;
for(int j=1;j<=i;++j)C[i][j]=C[i-1][j-1]+C[i-1][j];
}
while((1ll<<len)<=n)++len;
for(int i=len-1;~i;--i)if((n>>i)&1){
for(int j=0;j+pre<=len;++j)cnt[j+pre]+=C[i][j];
++pre;
}
++cnt[pre];
for(int i=2;i<=60;++i)(ans*=ksm(i,cnt[i]))%=mod;
cout<<ans;
return 0;
}
2018.10.27 bzoj3209: 花神的数论题(数位dp)的更多相关文章
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
- bzoj3209 花神的数论题——数位dp
题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...
- [bzoj3209][花神的数论题] (数位dp+费马小定理)
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
- BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...
- bzoj 3209 花神的数论题 —— 数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...
- 花神的数论题(数位dp)
规定sum[i] 为i里面含1的个数 ,求从1-N sum[i]的乘积. 数为64位内的,也就是sum[i]<=64的,这样可以dp求出1-N中含k个1的数有多少个,快速幂一下就可以了. 有个地 ...
- 洛谷$ P$4317 花神的数论题 数位$dp$
正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...
随机推荐
- SQLite4Unity3d
What's this? When I started with Unity3d development I needed to use SQLite in my project and it was ...
- 对stm32f373XX的startup.s的文件的分析
;******************** (C) COPYRIGHT 2012 STMicroelectronics ********************;* File Name : start ...
- java初学网站
http://www.jfinal.com/doc http://www.w3school.com.cn/
- 运行PL-SVO(单目)
代码:https://github.com/rubengooj/pl-svo 1.Prerequisites and dependencies (1)SVO 安装SVO,with ROS:https: ...
- [z]重建索引
https://blog.csdn.net/funnyfu0101/article/details/52961485 所有执行的结果是脚本命令集合,可以用来创建索引: a)在plsql中使用execu ...
- linux arm-linux-gcc 安装编译
1,将 .tgz 安装包通过SSH传至ubuntu 2,tar -zxvf arm-linux-gcc.tgz 解压 3,配置环境变量(由于鄙人只需其中一个用户使用,所以直接再其主目录) ...
- Android requires compiler compliance level 5.0 or 6.0. Found '1.4' instead.解决方法
今天在eclipse里报这个错误: Android requires compiler compliance level 5.0 or 6.0. Found '1.4' instead. Please ...
- 4.Mysql中的运算符
4.Mysql中的运算符运算符用来连接表达式.运算符包括:算术运算符.比较运算符.逻辑运算符.位运算符. 4.1 算术运算符算术运算符包括加(+).减(-).乘(*).除(/).取模(%,MOD) 5 ...
- IIS7中的站点、应用程序和虚拟目录详细介绍
IIS7中的站点.应用程序和虚拟目录详细介绍 这里说的不是如何解决路径重写或者如何配置的问题,而是阐述一下站点(site),应用程序(application)和虚拟目录 (virtual direct ...
- Activity(活动)