2018.10.27 bzoj3209: 花神的数论题(数位dp)
传送门
数位dpdpdp经典题。
题面已经暗示了我们按照二进制位来数位dpdpdp。
直接dpdpdp多少个数有111个111,222个111,333个111…,
然后快速幂算就行了。
于是我们枚举前几位跟nnn相同,后面比nnn小的方案数。
这个显然是可以用组合数算的。
注意nnn自己的也要算进贡献。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=10000007;
ll n,C[65][65],ans=1,cnt[65];
int len,pre;
inline ll ksm(ll x,ll p){ll ret=1;for(;p;p>>=1,x=x*x%mod)if(p&1)ret=ret*x%mod;return ret;}
int main(){
cin>>n;
for(int i=0;i<=60;++i){
C[i][0]=1;
for(int j=1;j<=i;++j)C[i][j]=C[i-1][j-1]+C[i-1][j];
}
while((1ll<<len)<=n)++len;
for(int i=len-1;~i;--i)if((n>>i)&1){
for(int j=0;j+pre<=len;++j)cnt[j+pre]+=C[i][j];
++pre;
}
++cnt[pre];
for(int i=2;i<=60;++i)(ans*=ksm(i,cnt[i]))%=mod;
cout<<ans;
return 0;
}
2018.10.27 bzoj3209: 花神的数论题(数位dp)的更多相关文章
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
- bzoj3209 花神的数论题——数位dp
题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...
- [bzoj3209][花神的数论题] (数位dp+费马小定理)
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
- BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...
- bzoj 3209 花神的数论题 —— 数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...
- 花神的数论题(数位dp)
规定sum[i] 为i里面含1的个数 ,求从1-N sum[i]的乘积. 数为64位内的,也就是sum[i]<=64的,这样可以dp求出1-N中含k个1的数有多少个,快速幂一下就可以了. 有个地 ...
- 洛谷$ P$4317 花神的数论题 数位$dp$
正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...
随机推荐
- 98. Validate Binary Search Tree (Tree; DFS)
Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...
- c++实现中的一些注意 事项
1,尽可能延后对象中的变量定义式的出现,这样可以增加程序的清晰度,尽量少的调用构造,如果有定义变量最好在末尾定义并给予初值,这样就避免了默认构造函数的调用. 2 尽量少做转型操作. const_cas ...
- Hive和并行数据仓库的比较
最近分析和比较了Hive和并行数据仓库的架构,本文记下一些体会. Hive是架构在Hadoop MapReduce Framework之上的开源数据分析系统. Hive具有如下特点: 1. 数据以HD ...
- xcode 更新svn/Git后发现模拟器显示No Scheme问题
这个是由于XXX..xcodeproj包中xcuserdata文件夹中user.xcuserdatad文件夹名字的问题...user.xcuserdatad文件夹的名字,不是当前用户的名字,就会显示n ...
- 快速将磁盘的MBR分区方式改成GPT分区方式
1.按Shift + F10打开命令提示符. 2.diskpart 3.list disk(列出所有磁盘) 4.select disk 0(选择磁盘) 5.clean(格式化所选的磁盘) 7.conv ...
- 使用PHP来简单的创建一个RPC服务
RPC全称为Remote Procedure Call,翻译过来为"远程过程调用".主要应用于不同的系统之间的远程通信和相互调用. 比如有两个系统,一个是PHP写的,一个是JAVA ...
- Windows系统崩溃后快速恢复Oracle数据库的妙招
Windows系统崩溃后快速恢复Oracle数据库,以下是操作步骤 假设oracle数据安装在d:\\oracle文件夹中,数据库名称orcl 1>将崩溃的数据库安装目录"d:\\or ...
- .net core和.net 4.7区别和联系笔记
1. 简单说,都是.net standard所定义的接口的实现,都是 .net standard的儿子. 3down voteaccepted C# is a programming language ...
- 26.mysql日志
26.mysql日志mysql日志包括:错误日志.二进制日志.查询日志.慢查询日志. 26.1 错误日志错误日志记录了mysqld启动到停止之间发生的任何严重错误的相关信息.mysql故障时应首先查看 ...
- Event 事件
事件是建立在委托的基础之上的. http://www.cnblogs.com/lystory/p/5085786.html public class 事件参数 { public 事件参数(string ...