2018.10.27 bzoj3209: 花神的数论题(数位dp)
传送门
数位dpdpdp经典题。
题面已经暗示了我们按照二进制位来数位dpdpdp。
直接dpdpdp多少个数有111个111,222个111,333个111…,
然后快速幂算就行了。
于是我们枚举前几位跟nnn相同,后面比nnn小的方案数。
这个显然是可以用组合数算的。
注意nnn自己的也要算进贡献。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=10000007;
ll n,C[65][65],ans=1,cnt[65];
int len,pre;
inline ll ksm(ll x,ll p){ll ret=1;for(;p;p>>=1,x=x*x%mod)if(p&1)ret=ret*x%mod;return ret;}
int main(){
cin>>n;
for(int i=0;i<=60;++i){
C[i][0]=1;
for(int j=1;j<=i;++j)C[i][j]=C[i-1][j-1]+C[i-1][j];
}
while((1ll<<len)<=n)++len;
for(int i=len-1;~i;--i)if((n>>i)&1){
for(int j=0;j+pre<=len;++j)cnt[j+pre]+=C[i][j];
++pre;
}
++cnt[pre];
for(int i=2;i<=60;++i)(ans*=ksm(i,cnt[i]))%=mod;
cout<<ans;
return 0;
}
2018.10.27 bzoj3209: 花神的数论题(数位dp)的更多相关文章
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
- bzoj3209 花神的数论题——数位dp
题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...
- [bzoj3209][花神的数论题] (数位dp+费马小定理)
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
- BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...
- bzoj 3209 花神的数论题 —— 数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...
- 花神的数论题(数位dp)
规定sum[i] 为i里面含1的个数 ,求从1-N sum[i]的乘积. 数为64位内的,也就是sum[i]<=64的,这样可以dp求出1-N中含k个1的数有多少个,快速幂一下就可以了. 有个地 ...
- 洛谷$ P$4317 花神的数论题 数位$dp$
正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...
随机推荐
- 98. Validate Binary Search Tree (Tree; DFS)
Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...
- PHPlaravel中从数据库中选择数据是增加时间条件及各种条件
注:附加条件后要加get函数. 1.public function getForDataTable($startTime,$endTime){ return $this->query() -&g ...
- 最近读jdk源码一些基础的总结(有待后续深入)
第一点:java.lang 1.Object类,hashCode()方法,equals()方法,clone()方法,toString()方法,notify()和notifyAll()方法,wait() ...
- git add和git commit
git命令使用:提交前可指定要提交哪些文件,然后使用git commit来提交 样例: git status 输出: Changes to be committed: modified: app/ ...
- PAT L2-011 玩转二叉树(二叉树层序遍历)
给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列.所谓镜面反转,是指将所有非叶结点的左右孩子对换.这里假设键值都是互不相等的正整数. 输入格式: 输入第一行给出 ...
- 有关defer和async的区别
关于async.defer功能及异同的介绍 async属性会让js并行加载,并在js加载完成后立即执行,也就是说执行顺序由加载速度定,而不是html中的先后顺序 defer属性js同样会并行加载,而执 ...
- python中if not x: 和 if x is not None: 和 if not x is None的使用和区别
代码中经常会有变量是否为None的判断,有三种主要的写法: 第一种是`if x is None`: 第二种是 `if not x:`: 第三种是`if not x is None`(这句这样理解更清晰 ...
- Android沉浸式状态栏背景色以及字体颜色的修改
在activity中设置透明状态栏 的思路: 1.让activity的布局全屏 此时布局会和状态栏重叠 2.让布局最上方预留出和状态栏高度一样的高度,将状态栏的背景色设置为透明 效 ...
- 在 JavaScript 中 ["1","2","3"].map(parseInt) 为何返回不是 [1,2,3] 却是 [1,NaN,NaN]?
这个问题我是希望有很多人可以一起交流的: 我在 http://blog.csdn.net/justjavac/article/details/19473199#t0 上看到了比较详细的解释, 但是具体 ...
- Query to find the eligible indexes for rebuilding
Query to find the eligible indexes for rebuilding The following script can be used to determine whic ...