Derivative Pricing_1_Black


1. Stock Option wih divends
1.1 Task A
1.1.1 Calculate a ECO on a stock.
/Ex-dividend dates in 3 and 6 months, each dividend is expected to be 1;
/P0 = 80, K = 80, σ = 0.25 per annum, rf = 0.07; T = 1;
1.1.2 Process and results:
K <- 80
r <- 0.07
sigma <- 0.25
tau <- 1
# pv of expected dividends
d <- exp(-(tau/4) * r) + exp(-(tau/2) * r)
# stock price
S <- K - d
Deduct pv of dividends from S0 to arrive at purely random component of S0 which is 78.0517.



y <- (log(S/K) + (r - sigma^2 / 2) * tau) / (sigma * sqrt(tau))
cdfy <- pnorm(y)
cdfn <- pnorm(y + sigma * sqrt(tau))
# BS formula
C <- S * cdfn - (K * exp(-r * tau) * cdfy)

1.2 Task B
1.2.1 Calculate EPO using BSM model, assume that
/Continuously compounded dividend yield is 0.015;
/S0 = 100, K = 100, option expires in 275 days, volatility is 0.45;
/Continuously compounded rf = 0.03;
1.2.2 Process and results
# Adjust S0
GBSOption('p', 100 * exp(-0.015 * (275/365)), 100, 275/365, 0.03, 0.03, 0.45)

2. Black's Futures Option Model
2.1 Key parameter: S = F, b = 0;
2.2 Task: Need an option for an asset (futures price = 120), assume K = 100, T = 5, volatility = 20%, riskfree rate = 5%;
2.3 Process and results:
GBSOption('c', 120, 100, 5, 0.05, 0, 0.2)

3. Pricing Cap Using Black
3.1 Key parameter: S = F(n-1), b = 0;
3.2 Notes:
Interest rate caps are interest rate derivatives, where holder receives positive payments throughout periods if interest rate exceeds certain level (strike price, K).
Interest rate floors the holder wins if interest rate below K.
3.3 Task:
Need to pay USD LIBOR for 6 months to Alex between May and Nov 2020, so use caplet avoid interest rate risk.
Assume: the caplet on LIBOR rate with 2.5% strike price (i.e., if LIBOR > 2.5%, one period payoff = 0.5 * max[3% - 2.5%, 0]);
LIBOR follows Brownian Motion with 20% volatility;
forward rate between May and Nov = 2.2%;
spot rate = 2%;
3.4 Process and results:
GBSOption('c', 0.022, 0.025, 0.5, 0.02, 0, 0.2)

3.5 Comments
3.5.1 Still need to multiply the time interval 0.5 on 0.0003269133 to get 0.0001634567, if unit is million USD, the final price of caplet will be 163USD;
3.5.2 Cap is sum of caplets !!! % LIBOR changes all the time, example above is just a single caplet calculation, below is whole method. Now assume that:
we need a cap that pays if LIBOR > 2.5% in first 3m, or if LIBOR > 2% in following 3m;
forward LIBOR rate in May~Aug is 2.1%, in Aug~Nov is 2.2%;
GBSOption('c', 0.021, 0.025, 0.25, 0.02, 0, 0.2)
GBSOption('c', 0.022, 0.02, 0.25, 0.02, 0, 0.2)
# we seperately get two prices, each of them with time interval 0.25, so final price of cap is:
0.25 * (3.743394e-05 + 0.002179862)
0.000554324
So final price of cap will be 554USD.
4. Drawing Binomial Trees for Stock Option
4.1 Key parameter: b = r;
4.2 Assume:
Stock P0 = 900, K = 950, r = 0.02, T = 3m, Volatility = 0.22
4.3 Process and results:
tree <- BinomialTreeOption(TypeFlag = 'ce', S = 900, X = 950, 1/4, 0.02, b = 0.02, sigma = 0.22, n = 3)
BinomialTreePlot(tree, dy = 1, xlab = 'Time steps', ylab = 'number of up steps', xlim = c(0, 4))
title(main = 'European Call Option')

4.4 Comment:
This is CRR Binomial model, which converges to Black. Black Pricing is as below:

Derivative Pricing_1_Black的更多相关文章
- Derivative of the softmax loss function
Back-propagation in a nerual network with a Softmax classifier, which uses the Softmax function: \[\ ...
- Derivative of Softmax Loss Function
Derivative of Softmax Loss Function A softmax classifier: \[ p_j = \frac{\exp{o_j}}{\sum_{k}\exp{o_k ...
- XVII Open Cup named after E.V. Pankratiev Stage 14, Grand Prix of Tatarstan, Sunday, April 2, 2017 Problem A. Arithmetic Derivative
题目:Problem A. Arithmetic DerivativeInput file: standard inputOutput file: standard inputTime limit: ...
- The Softmax function and its derivative
https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/ Eli Bendersky's website ...
- matlab 提示 Continuous sample time is not supported by discrete derivative 错误的解决办法
Simulink仿真的时候,出行错误提示:Continuous sample time is not supported by discrete derivative 中文意思是:连续采样时间不支持离 ...
- [PE484]Arithmetic Derivative
题意:对整数定义求导因子$'$:$p'=1,(ab)'=a'b+ab'$,求$\sum\limits_{i=2}^n(i,i')$ 这个求导定义得比较妙:$(p^e)'=ep^{e-1}$ 推一下就可 ...
- 【找规律】【DFS】XVII Open Cup named after E.V. Pankratiev Stage 14, Grand Prix of Tatarstan, Sunday, April 2, 2017 Problem A. Arithmetic Derivative
假设一个数有n个质因子a1,a2,..,an,那么n'=Σ(a1*a2*...*an)/ai. 打个表出来,发现一个数x,如果x'=Kx,那么x一定由K个“基础因子”组成. 这些基础因子是2^2,3^ ...
- 共变导数(Covariant Derivative)
原文链接 导数是指某一点的导数表示了某点上指定函数的变化率. 比如,要确定某物体的速度在某时刻的加速度,就取时间轴上下一时刻的一个微小增量,然后考察速度的增量和时间增量的比值.如果这个比值比较大,说明 ...
- 求导四则运算以及三角函数求导 Derivative formulas
对特定函数的求导. 1:sin(x) 对其进行求斜率.带入公式得:[ sin(x+Δx)- sin(x)]/Δx = [ sinx*cosΔx + cosx*sinΔx -sin x ]/ Δx = ...
随机推荐
- Bugku-CTF加密篇之zip伪加密(flag.zip)
zip伪加密
- SPOJ Distinct Substrings
给定一个字符串,求不相同子串个数.每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同子串个数.总数为n*(n-1)/2,再减掉height[i]的和就是答案 #include< ...
- c++写入注册表
一.说明: 注册表是Windows重要组成部分,注册表记录了大量有关电脑软硬件的信息.注册表中的值通过其名称标识.值名称由与键名相同的字符组成.值本身可以是字符串.二进制数据或者是32位无符 ...
- jq鼠标移入移除事件
mouseover与mouseenter 不论鼠标指针穿过被选元素或其子元素,都会触发 mouseover 事件.只有在鼠标指针穿过被选元素时,才会触发 mouseenter 事件. mouseout ...
- Codeforces Round #601 (Div. 2)D(蛇形模拟)
#define HAVE_STRUCT_TIMESPEC #include<bits/stdc++.h> using namespace std; vector<char>an ...
- mongodb 用户指引
维护人:陈权 一.mongodb install on linuxcurl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.0.6 ...
- 从QC到QA
QC遇到了什么无法逾越的障碍 我们公司的主要业务是项目外包,一般的项目都在2-3个月的周期,采用瀑布模式.这种模式本身是相对简单,且十分成熟的模式.但是在实际的工作中,我们还是遇到了前所未有的挑战. ...
- 从 0 到 1:Apache APISIX 的 Apache 之路
2019 年 12 月 14 日,又拍云联合 Apache APISIX 社区举办 API 网关与高性能服务最佳实践丨Open Talk 广州站活动,本次活动,邀请了来自Apache APISIX.又 ...
- Coursera-吴恩达机器学习课程笔记-Week3
logistic regression Binary classification problems logistic regression 是一个分类算法 Hypothesis function d ...
- spark报错 java.lang.NoClassDefFoundError: scala/xml/MetaData
代码: 报错信息: java.lang.NoClassDefFoundError: scala/xml/MetaData 原因:确失jar包 <dependency> <groupI ...