Problem 1009. -- [HNOI2008]GT考试

1009: [HNOI2008]GT考试

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 3773  Solved: 2314
[Submit][Status][Discuss]

Description

  阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0

Input

  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

Output

  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81
 
 
 
 
先给出递推关系式 dp[i][j]=a0*dp[i-1][0]+a1*dp[i-1][1]+a2*dp[i-1][2]+a3*dp[i-1][3]+.......an*dp[i-1][m-1];
 最终有ans=dp[n][0]+dp[n][1]+dp[n][2]+....dp[n][m-1];
dp[i][j]的意思是前i个数组元素的后缀有j个和所要匹配的字符串相同。
首先说明这个递推关系式是正确的:将所有合法的号码按   字符串的尾缀与不合法字符串的前缀  相同元素的个数分类,满足不重不漏关系,所以DP是对的。
然后关系式为线性关系,所以可以用矩阵快速幂来计算。
剩下的问题就是如何求得a0,a1,a2....an(系数矩阵)。
进行一遍for循环范围为i=0----m-1,可以知道i只能对i+1之前的元素产生影响,然后再进行填数字。再由KMP进行确定系数。
 
 
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,mod;
int next[],num[];
void get(){
    int i=,j=-;
    next[]=-;
    while(i<m){
        if(j==-||num[i]==num[j]) next[++i]=++j;
        else j=next[j];
    }
}
struct node{
   int mx[][];
   node(){memset(mx,,sizeof(mx));}
}a;
node mult(const node &a,const node &b){
   node c;
   for(int i=;i<m;++i)
    for(int j=;j<m;++j)
    for(int k=;k<m;++k)
    c.mx[i][j]=(c.mx[i][j]+a.mx[i][k]*b.mx[k][j])%mod;
   return c;
}
node ksm(node a,int k){
    node r;
    for(int i=;i<m;++i)
        r.mx[i][i]=;
    while(k){
        if(k&) {r=mult(r,a);k|=;}
        k>>=;
        a=mult(a,a);
    }
    return r;
}
int main(){
   scanf("%d%d%d",&n,&m,&mod);
   getchar();
   for(int i=;i<m;++i) num[i]=getchar()-'';
   get();
   for(int i=;i<m;++i)  //进行第i个元素填充
   for(int j=;j<=;++j){ //若第i个元素为j
    int tmp=i;              //这里首先假设后缀满足了i个,然后对i个位置(数组元素从0开始,所以比较的时候还是num[tmp]而不是num[tmp+1])填充j
    while(tmp!=-&&j!=num[tmp]) tmp=next[tmp];  //若是不相同,就向前找。
    if(tmp==-) ++a.mx[i][];   //如果未找到匹配的位置,则dp[i+1][0]的系数a[i][0]要加1
    else ++a.mx[i][tmp+];  //可以转移到tmp+1的位置(若开始就匹配,就表示可以转移到他的下一个位置,系数加1)
   }//系数矩阵显然是个方阵,第i行第j列表示前一个后缀满足i个转移到后一个后缀满足j个的系数(从而也可以知道系数矩阵第一行起初就是dp[1][0],dp[1][1]...dp[1][m])
   a=ksm(a,n);
   int ans=;
   for(int i=;i<m;++i)
    ans=(ans+a.mx[][i])%mod;
   printf("%d\n",ans);
}
 
 
 

BZOJ1009 矩阵快速幂+DP+KMP的更多相关文章

  1. codeforces 691E 矩阵快速幂+dp

    传送门:https://codeforces.com/contest/691/problem/E 题意:给定长度为n的序列,从序列中选择k个数(可以重复选择),使得得到的排列满足xi与xi+1异或的二 ...

  2. P1357 花园 (矩阵快速幂+ DP)

    题意:一个只含字母C和P的环形串 求长度为n且每m个连续字符不含有超过k个C的方案数 m <= 5  n <= 1e15 题解:用一个m位二进制表示状态 转移很好想 但是这个题是用矩阵快速 ...

  3. Codeforces 576D Flights for Regular Customers 矩阵快速幂+DP

    题意: 给一个$n$点$m$边的连通图 每个边有一个权值$d$ 当且仅当当前走过的步数$\ge d$时 才可以走这条边 问从节点$1$到节点$n$的最短路 好神的一道题 直接写做法喽 首先我们对边按$ ...

  4. COJ 1208 矩阵快速幂DP

    题目大意: f(i) 是一个斐波那契数列 , 求sum(f(i)^k)的总和 由于n极大,所以考虑矩阵快速幂加速 我们要求解最后的sum[n] 首先我们需要思考 sum[n] = sum[n-1] + ...

  5. Codeforces 954 dijsktra 离散化矩阵快速幂DP 前缀和二分check

    A B C D 给你一个联通图 给定S,T 要求你加一条边使得ST的最短距离不会减少 问你有多少种方法 因为N<=1000 所以N^2枚举边数 迪杰斯特拉两次 求出Sdis 和 Tdis 如果d ...

  6. BZOJ1009: [HNOI2008]GT考试 (矩阵快速幂 + DP)

    题意:求一个长度为n的数字字符串 (n <= 1e9) 不出现子串s的方案数 题解:用f i,j表示长度为i匹配到在子串j的答案 用kmp的失配函数预处理一下 然后这个转移每一个都是一样的 所以 ...

  7. Codeforces 989E A Trance of Nightfall 矩阵快速幂+DP

    题意:二维平面上右一点集$S$,共$n$个元素,开始位于平面上任意点$P$,$P$不一定属于$S$,每次操作为选一条至少包含$S$中两个元素和当前位置$P$的直线,每条直线选取概率相同,同一直线上每个 ...

  8. bzoj2004 矩阵快速幂优化状压dp

    https://www.lydsy.com/JudgeOnline/problem.php?id=2004 以前只会状压dp和矩阵快速幂dp,没想到一道题还能组合起来一起用,算法竞赛真是奥妙重重 小Z ...

  9. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

随机推荐

  1. Micropython教程之TPYBoard开发板驱动舵机教程(萝卜学科编程教育)

    大家应该都看到过机器人的手臂啊腿脚啊什么的一抽一抽的在动弹吧...是不是和机械舞一样的有节奏,现在很多机器人模型里面的动力器件都是舵机. 但是大家一般见到的动力器件都是像步进电机,直流电机这一类的动力 ...

  2. 配置secondarynamenode主机名masters

    1.配置hadoop的secondarynamenode,配置内容如下 node2 本文转自 素颜猪 51CTO博客,原文链接:http://blog.51cto.com/suyanzhu/19592 ...

  3. 图论--最短路--SPFA模板(能过题,真没错的模板)

    [ACM常用模板合集] #include<iostream> #include<queue> #include<algorithm> #include<set ...

  4. 关于2020.04.26【MySQL导出数据到文件中的方法】的补充

    之前导出的数据文件中没有表的列名,感觉不够完整,摸索一下发现带表列名导出也是可以的,只试了导出txt和csv两种文件类型的方法.       1.导出数据到txt文件中(包含数据表列名)的方法:先选择 ...

  5. python文件路径分隔符的详细分析

    写了挺久的python,文件分隔符的掌握肯定是必须的,但是我之前写的都是不规范的文件路径分隔符,例如‘’C:\User\temp\python.txt’,一直都没有报过错.也不知为啥,今天查阅资料才知 ...

  6. 《Docker从入门到跑路》之简介

    什么是Docker Docker,中文翻译是"码头工人".根据官方的定义,Docker是以Docker容器为资源分割和调度的基本单元,封装了整个软件运行的环境,为开发者和系统管理员 ...

  7. 用Navicat建MySQL数据库表,动态改变创建时间和更新时间戳

    1.create_time 记录创建的时间,设默认值为:CURRENT_TIMESATMP 注意:不勾选那个[根据当前时间戳更新] 2.operator_time 更新记录的时间,勾选那个[根据当前时 ...

  8. TSP变形(三进制状压)

    题目:HDU3001 #include <bits/stdc++.h> using namespace std; ],vis[][],dis[][]; ][]; void init()// ...

  9. 面试官:你说你懂动态代理,那你知道为什么JDK中的代理类都要继承Proxy吗?

    之前我已经写过了关于动态代理的两篇文章,本来以为这块应该没啥问题,没想到今天又被难住了- 太难了!!! 之前文章的链接: 动态代理学习(一)自己动手模拟JDK动态代理. 动态代理学习(二)JDK动态代 ...

  10. SpringCloud (一) :微服务架构

    什么是微服务架构 简而言之,微服务架构风格就是将单一应用的开发分为多个小的服务,每个小的服务在自己的进程中运行并使用轻量级机制进行通信(通常是一个HTTP API源),这些服务围绕业务性能进行构建,并 ...