[hdu1317]spfa
题意:给一个有向图,每个点有一个权值,从1个点出发,初始能量有100,每到达新的点,能量就会加上那个点的权值,当能量大于0时才能继续走,可以多次进入同一点。问能否到达目标点
思路:如果没正权环,则直接优先队列bfs模拟走的过程即可,因为先到不会比后到的能量少,那过程其实就和dijkstra差不多,但根据题目的意思,是可能存在正权环的,所以dijkstra行不通,于是考虑spfa。一旦某个点入队了n次,就可判定这个点在正权环上,通过在正权环上不断走来获得无限的能量,于是将这个点的能量值设为无穷大,并让它再入队一次后丢弃这个点(因为能量值变为了无穷大,需要用它来更新邻点,更新完了它就没有存在的意义了),同时判断这个点是否与目标点连通,如果连通,那么毫无疑问,目标点肯定可以顺利到达。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
#include <map> #include <set> #include <cmath> #include <ctime> #include <deque> #include <queue> #include <vector> #include <cstdio> #include <string> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define X first #define Y second #define pb push_back #define mp make_pair #define all(a) (a).begin(), (a).end() #define fillchar(a, x) memset(a, x, sizeof(a)) typedef long long ll; typedef pair< int , int > pii; typedef unsigned long long ull; #ifndef ONLINE_JUDGE void RI(vector< int >&a, int n){a.resize(n); for ( int i=0;i<n;i++) scanf ( "%d" ,&a[i]);} void RI(){} void RI( int &X){ scanf ( "%d" ,&X);} template < typename ...R> void RI( int &f,R&...r){RI(f);RI(r...);} void RI( int *p, int *q){ int d=p<q?1:-1; while (p!=q){ scanf ( "%d" ,p);p+=d;}} void print(){cout<<endl;} template < typename T> void print( const T t){cout<<t<<endl;} template < typename F, typename ...R> void print( const F f, const R...r){cout<<f<< ", " ;print(r...);} template < typename T> void print(T*p, T*q){ int d=p<q?1:-1; while (p!=q){cout<<*p<< ", " ;p+=d;}cout<<endl;} #endif template < typename T> bool umax(T&a, const T&b){ return b<=a? false :(a=b, true );} template < typename T> bool umin(T&a, const T&b){ return b>=a? false :(a=b, true );} template < typename T> void V2A(T a[], const vector<T>&b){ for ( int i=0;i<b.size();i++)a[i]=b[i];} template < typename T> void A2V(vector<T>&a, const T b[]){ for ( int i=0;i<a.size();i++)a[i]=b[i];} const double PI = acos (-1.0); const int INF = 1e9 + 7; /* -------------------------------------------------------------------------------- */ const int maxn = 107; struct Graph { vector<vector< int > > G; void clear() { G.clear(); } void resize( int n) { G.resize(n + 2); } void add( int u, int v) { G[u].push_back(v); } vector< int > & operator [] ( int u) { return G[u]; } }; Graph G; bool vis[maxn], flag[maxn]; int n; int cnt[maxn], d[maxn], p[maxn]; bool dfs( int s, int t) { if (s == t) return true ; vis[s] = true ; for ( int i = 0; i < G[s].size(); i ++) { int v = G[s][i]; if (!vis[v]) if (dfs(v, t)) return true ; } return false ; } bool relax( int u, int v) { if (d[u] + p[v] > d[v]) { d[v] = d[u] + p[v]; return true ; } return false ; } bool work() { queue< int > Q; Q.push(1); fillchar(d, 0); fillchar(flag, 0); fillchar(cnt, 0); d[1] = 100; flag[1] = true ; while (!Q.empty()) { int u = Q.front(); Q.pop(); flag[u] = false ; if (u == n) return true ; if (d[u] >= 1e8) { fillchar(vis, 0); if (dfs(u, n)) return true ; } int sz = G[u].size(); for ( int i = 0; i < sz; i ++) { int v = G[u][i]; if (relax(u, v)) { if (!flag[v]) { flag[v] = true ; if (cnt[v] > n) continue ; if (cnt[v] == n) d[v] = INF; Q.push(v); cnt[v] ++; } } } } return false ; } int main() { #ifndef ONLINE_JUDGE freopen ( "in.txt" , "r" , stdin); //freopen("out.txt", "w", stdout); #endif // ONLINE_JUDGE int m, v; while (cin >> n, ~n) { G.clear(); G.resize(n); for ( int i = 1; i <= n; i ++) { scanf ( "%d%d" , p + i, &m); for ( int j = 0; j < m; j ++) { scanf ( "%d" , &v); G.add(i, v); } } fillchar(vis, 0); if (!dfs(1, n)) puts ( "hopeless" ); else puts (work()? "winnable" : "hopeless" ); } return 0; } |
[hdu1317]spfa的更多相关文章
- 【BZOJ-3627】路径规划 分层图 + Dijkstra + spfa
3627: [JLOI2014]路径规划 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 186 Solved: 70[Submit][Status] ...
- POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
传送门 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 46727 Acce ...
- sgu 240 Runaway (spfa)
题意:N点M边的无向图,边上有线性不下降的温度,给固定入口S,有E个出口.逃出去,使最大承受温度最小.输出该温度,若该温度超过H,输出-1. 羞涩的题意 显然N*H的复杂度dp[n][h]表示到达n最 ...
- spfa模板
通过stl的queue实现的spfa(vector实现邻接表存图) 本模板没有考虑存在两点不连通的情况 如果需要判断则需要用到并查集或者遍历整个邻接表 #include<iostream> ...
- SPFA
SPFA算法用来求单源最短路.可以处理任何有解的情况. 先建一个数组\(dist_x = 起点到x的最短路长度\),当\(x=起点\)时为0,当x和起点不通时为INF(本题中为\(2^31-1\)). ...
- BZOJ2763 [JLOI2011]飞行路线(SPFA + DP)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=2763 Description Alice和Bob现在要乘飞机旅行,他们选择了一家 ...
- bzoj3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一(spfa+状压DP)
数据最多14个有宝藏的地方,所以可以想到用状压dp 可以先预处理出每个i到j的路径中最小权值的最大值dis[i][j] 本来想用Floyd写,无奈太弱调不出来..后来改用spfa 然后进行dp,这基本 ...
- bzoj 1179[Apio2009]Atm (tarjan+spfa)
题目 输入 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号.接下来N行,每行一 ...
- codevs 1021 玛丽卡(spfa)
题目描述 Description 麦克找了个新女朋友,玛丽卡对他非常恼火并伺机报复. 因为她和他们不住在同一个城市,因此她开始准备她的长途旅行. 在这个国家中每两个城市之间最多只有一条路相通,并且我们 ...
随机推荐
- linux 文件的查找和压缩
1.使用 locate 命令 需要安装:yum install mlocate -y 创建或更新 slocate/locate 命令所必需的数据库文件:updatedb 作用:搜索不经常改变的文件如配 ...
- 2020-MRCTF
ez_bypass I put something in F12 for you include 'flag.php'; $flag='MRCTF{xxxxxxxxxxxxxxxxxxxxxxxxx} ...
- golang方法详解
Go 语言 类型方法是一种对类型行为的封装 .Go 语言的方法非常纯粹, 可以看作特殊类型的函数,其显式地将对象实例或指针作为函数的第一个参数,并且参数可以自己指定,而不强制要求一定是 this或se ...
- Spring Cloud Gateway+Nacos,yml+properties两种配置文件方式搭建网关服务
写在前面 网关的作用不在此赘述,举个最常用的例子,我们搭建了微服务,前端调用各服务接口时,由于各服务接口不一样,如果让前端同事分别调用,前端同事会疯的.而网关就可以解决这个问题,网关屏蔽了各业务服务的 ...
- EasyPoi 导入导出Excel时使用GroupName的踩坑解决过程
一.开发功能介绍: 简单的一个excel导入功能 二.Excel导入模板(大致模板没写全): 姓名 性别 生日 客户分类 联系人姓名 联系人部门 备注 材料 综合 采购 张三 男 1994/05/25 ...
- 《Metasploit魔鬼训练营》第一章实践作业
<Metasploit魔鬼训练营>第一章实践作业 1.搜集Samba服务usermap_script安全漏洞的相关信息,画出该安全漏洞的生命周期图,标注各个重要事件点的日期,并提供详细描述 ...
- java 8中 predicate chain的使用
目录 简介 基本使用 使用多个Filter 使用复合Predicate 组合Predicate Predicate的集合操作 总结 java 8中 predicate chain的使用 简介 Pred ...
- 【Linux题目】第五关
1. 如何取得/etiantian文件的权限对应的数字内容,如-rw-r-r 为644,要求使用命令取得644或0644这样的数字. 解答: 方法1:用sed获取stat filename里的属性值 ...
- 【DNS域名解析命令】 dig
dig - DNS lookup utility dig 命令主要用来从 DNS 域名服务器查询主机地址信息. Dig (domain information groper 域名信息搜索)是一个灵活的 ...
- 乾颐堂7月HCIE、CCIE通过名单
拼多多都上市了,现在很多培训机构也流行公用一张PASS了,山寨总是山寨的,不脚踏实地总是欺骗自己7月(自然月)乾颐堂通过22名学员,每个考试日通过一名HCIE.CCIE 转载于:https://blo ...