一、分区表

1.1 概念

Hive 中的表对应为 HDFS 上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大。

分区为 HDFS 上表目录的子目录,数据按照分区存储在子目录中。如果查询的 where 字句的中包含分区条件,则直接从该分区去查找,而不是扫描整个表目录,合理的分区设计可以极大提高查询速度和性能。

这里说明一下分区表并 Hive 独有的概念,实际上这个概念非常常见。比如在我们常用的 Oracle 数据库中,当表中的数据量不断增大,查询数据的速度就会下降,这时也可以对表进行分区。表进行分区后,逻辑上表仍然是一张完整的表,只是将表中的数据存放到多个表空间(物理文件上),这样查询数据时,就不必要每次都扫描整张表,从而提升查询性能。

1.2 使用场景

通常,在管理大规模数据集的时候都需要进行分区,比如将日志文件按天进行分区,从而保证数据细粒度的划分,使得查询性能得到提升。

1.3 创建分区表

在 Hive 中可以使用 PARTITIONED BY 子句创建分区表。表可以包含一个或多个分区列,程序会为分区列中的每个不同值组合创建单独的数据目录。下面的我们创建一张雇员表作为测试:

 CREATE EXTERNAL TABLE emp_partition(
empno INT,
ename STRING,
job STRING,
mgr INT,
hiredate TIMESTAMP,
sal DECIMAL(7,2),
comm DECIMAL(7,2)
)
PARTITIONED BY (deptno INT) -- 按照部门编号进行分区
ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t"
LOCATION '/hive/emp_partition';

1.4 加载数据到分区表

加载数据到分区表时候必须要指定数据所处的分区:

# 加载部门编号为20的数据到表中
LOAD DATA LOCAL INPATH "/usr/file/emp20.txt" OVERWRITE INTO TABLE emp_partition PARTITION (deptno=20)
# 加载部门编号为30的数据到表中
LOAD DATA LOCAL INPATH "/usr/file/emp30.txt" OVERWRITE INTO TABLE emp_partition PARTITION (deptno=30)

1.5 查看分区目录

这时候我们直接查看表目录,可以看到表目录下存在两个子目录,分别是 deptno=20deptno=30,这就是分区目录,分区目录下才是我们加载的数据文件。

# hadoop fs -ls  hdfs://hadoop001:8020/hive/emp_partition/

这时候当你的查询语句的 where 包含 deptno=20,则就去对应的分区目录下进行查找,而不用扫描全表。

二、分桶表

1.1 简介

分区提供了一个隔离数据和优化查询的可行方案,但是并非所有的数据集都可以形成合理的分区,分区的数量也不是越多越好,过多的分区条件可能会导致很多分区上没有数据。同时 Hive 会限制动态分区可以创建的最大分区数,用来避免过多分区文件对文件系统产生负担。鉴于以上原因,Hive 还提供了一种更加细粒度的数据拆分方案:分桶表 (bucket Table)。

分桶表会将指定列的值进行哈希散列,并对 bucket(桶数量)取余,然后存储到对应的 bucket(桶)中。

1.2 理解分桶表

单从概念上理解分桶表可能会比较晦涩,其实和分区一样,分桶这个概念同样不是 Hive 独有的,对于 Java 开发人员而言,这可能是一个每天都会用到的概念,因为 Hive 中的分桶概念和 Java 数据结构中的 HashMap 的分桶概念是一致的。

当调用 HashMap 的 put() 方法存储数据时,程序会先对 key 值调用 hashCode() 方法计算出 hashcode,然后对数组长度取模计算出 index,最后将数据存储在数组 index 位置的链表上,链表达到一定阈值后会转换为红黑树 (JDK1.8+)。下图为 HashMap 的数据结构图:

1.3 创建分桶表

在 Hive 中,我们可以通过 CLUSTERED BY 指定分桶列,并通过 SORTED BY 指定桶中数据的排序参考列。下面为分桶表建表语句示例:

  CREATE EXTERNAL TABLE emp_bucket(
empno INT,
ename STRING,
job STRING,
mgr INT,
hiredate TIMESTAMP,
sal DECIMAL(7,2),
comm DECIMAL(7,2),
deptno INT)
CLUSTERED BY(empno) SORTED BY(empno ASC) INTO 4 BUCKETS --按照员工编号散列到四个 bucket 中
ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t"
LOCATION '/hive/emp_bucket';

1.4 加载数据到分桶表

这里直接使用 Load 语句向分桶表加载数据,数据时可以加载成功的,但是数据并不会分桶。

这是由于分桶的实质是对指定字段做了 hash 散列然后存放到对应文件中,这意味着向分桶表中插入数据是必然要通过 MapReduce,且 Reducer 的数量必须等于分桶的数量。由于以上原因,分桶表的数据通常只能使用 CTAS(CREATE TABLE AS SELECT) 方式插入,因为 CTAS 操作会触发 MapReduce。加载数据步骤如下:

1. 设置强制分桶

set hive.enforce.bucketing = true; --Hive 2.x 不需要这一步

在 Hive 0.x and 1.x 版本,必须使用设置 hive.enforce.bucketing = true,表示强制分桶,允许程序根据表结构自动选择正确数量的 Reducer 和 cluster by column 来进行分桶。

2. CTAS导入数据

INSERT INTO TABLE emp_bucket SELECT *  FROM emp;  --这里的 emp 表就是一张普通的雇员表

可以从执行日志看到 CTAS 触发 MapReduce 操作,且 Reducer 数量和建表时候指定 bucket 数量一致:

1.5 查看分桶文件

bucket(桶) 本质上就是表目录下的具体文件:

三、分区表和分桶表结合使用

分区表和分桶表的本质都是将数据按照不同粒度进行拆分,从而使得在查询时候不必扫描全表,只需要扫描对应的分区或分桶,从而提升查询效率。两者可以结合起来使用,从而保证表数据在不同粒度上都能得到合理的拆分。下面是 Hive 官方给出的示例:

CREATE TABLE page_view_bucketed(
viewTime INT,
userid BIGINT,
page_url STRING,
referrer_url STRING,
ip STRING )
PARTITIONED BY(dt STRING)
CLUSTERED BY(userid) SORTED BY(viewTime) INTO 32 BUCKETS
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\001'
COLLECTION ITEMS TERMINATED BY '\002'
MAP KEYS TERMINATED BY '\003'
STORED AS SEQUENCEFILE;

此时导入数据时需要指定分区:

INSERT OVERWRITE page_view_bucketed
PARTITION (dt='2009-02-25')
SELECT * FROM page_view WHERE dt='2009-02-25';

参考资料

  1. LanguageManual DDL BucketedTables

系列传送门

入门大数据---Hive分区表和分桶表的更多相关文章

  1. Hive 学习之路(五)—— Hive 分区表和分桶表

    一.分区表 1.1 概念 Hive中的表对应为HDFS上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为HDFS上表目录的子目录,数据按照分区存储在子目录中.如 ...

  2. Hive 系列(五)—— Hive 分区表和分桶表

    一.分区表 1.1 概念 Hive 中的表对应为 HDFS 上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为 HDFS 上表目录的子目录,数据按照分区存储在子 ...

  3. hive 分区表和分桶表

    1.创建分区表 hive> create table weather_list(year int,data int) partitioned by (createtime string,area ...

  4. 一起学Hive——创建内部表、外部表、分区表和分桶表及导入数据

    Hive本身并不存储数据,而是将数据存储在Hadoop的HDFS中,表名对应HDFS中的目录/文件.根据数据的不同存储方式,将Hive表分为外部表.内部表.分区表和分桶表四种数据模型.每种数据模型各有 ...

  5. 第2节 hive基本操作:11、hive当中的分桶表以及修改表删除表数据加载数据导出等

    分桶表 将数据按照指定的字段进行分成多个桶中去,说白了就是将数据按照字段进行划分,可以将数据按照字段划分到多个文件当中去 开启hive的桶表功能 set hive.enforce.bucketing= ...

  6. Hive分区表与分桶

    分区表 在Hive Select查询中.通常会扫描整个表内容,会消耗非常多时间做不是必需的工作. 分区表指的是在创建表时,指定partition的分区空间. 分区语法 create table tab ...

  7. Hive 教程(四)-分区表与分桶表

    在 hive 中分区表是很常用的,分桶表可能没那么常用,本文主讲分区表. 概念 分区表 在 hive 中,表是可以分区的,hive 表的每个区其实是对应 hdfs 上的一个文件夹: 可以通过多层文件夹 ...

  8. Hive SQL之分区表与分桶表

    Hive sql是Hive 用户使用Hive的主要工具.Hive SQL是类似于ANSI SQL标准的SQL语言,但是两者有不完全相同.Hive SQL和Mysql的SQL方言最为接近,但是两者之间也 ...

  9. 入门大数据---Hive常用DDL操作

    一.Database 1.1 查看数据列表 show databases; 1.2 使用数据库 USE database_name; 1.3 新建数据库 语法: CREATE (DATABASE|SC ...

随机推荐

  1. Rocket - tilelink - Fuzzer

    https://mp.weixin.qq.com/s/hAKpZHy0IU6_XEvctfkHOA   简单介绍Fuzzer的实现.   ​​   1. IDMapGenerator   功能类似于I ...

  2. Java并发编程 (十) 多线程并发拓展

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 一.死锁 1.死锁的定义 所谓的死锁是指两个或两个以上的线程在等待执行的过程中,因为竞争资源而造成的一种 ...

  3. 数据库之 MySQL --- 数据处理 之 单行函数、组函数 (四)

    [1]    LOWER : 将字符串中的内容全部转成小写             UPPER : 将字符串中的内容全部转成大写 SELECT LOWER ('abAcD') FROM DUAL SE ...

  4. Java实现 LeetCode 434 字符串中的单词数

    434. 字符串中的单词数 统计字符串中的单词个数,这里的单词指的是连续的不是空格的字符. 请注意,你可以假定字符串里不包括任何不可打印的字符. 示例: 输入: "Hello, my nam ...

  5. Java实现 LeetCode 211 添加与搜索单词 - 数据结构设计

    211. 添加与搜索单词 - 数据结构设计 设计一个支持以下两种操作的数据结构: void addWord(word) bool search(word) search(word) 可以搜索文字或正则 ...

  6. Java实现 稀疏矩阵乘积

    稀疏矩阵乘积 描述 给定两个N × N的稀疏矩阵A和B,其中矩阵A有P个元素非0,矩阵B有Q个元素非0.请计算两个矩阵的乘积C = A × B并且输出C中所有非0的元素. 输入 第一行包含三个整数N, ...

  7. java实现和为定值的两个数

    1 问题描述 输入一个整数数组和一个整数,在数组中查找两个数,满足他们的和正好是输入的那个整数.如果有多对数的和等于输入的整数,输出任意一对即可.例如,如果输入数组[1,2,4,5,7,11,15]和 ...

  8. Java实现微生物增殖

    微生物增殖 假设有两种微生物 X 和 Y X出生后每隔3分钟分裂一次(数目加倍),Y出生后每隔2分钟分裂一次(数目加倍). 一个新出生的X,半分钟之后吃掉1个Y,并且,从此开始,每隔1分钟吃1个Y. ...

  9. Java实现第十届蓝桥杯组队

    试题 A: 组队 本题总分:5 分 [问题描述] 作为篮球队教练,你需要从以下名单中选出 1 号位至 5 号位各一名球员, 组成球队的首发阵容. 每位球员担任 1 号位至 5 号位时的评分如下表所示. ...

  10. WSO2 - MI

    简介 WSO2MI(Micro Integrator)是一个事件驱动的企业服务总线(Enterprise Service Bus),支持消息路由.数据格式转换.通信协议转换,支持连接SAP.KAFKA ...