用keras训练模型并实时显示loss/acc曲线,(重要的事情说三遍:实时!实时!实时!)实时导出loss/acc数值(导出的方法就是实时把loss/acc等写到一个文本文件中,其他模块如前端调用时可直接读取文本文件),同时也涉及了plt画图方法

ps:以下代码基于网上的一段程序修改完成,如有侵权,请联系我哈!

上代码:

from keras import Sequential, initializers, optimizers
from keras.layers import Activation, Dense
import numpy as np
import pylab as pl
from IPython import display
from keras.callbacks import Callback
from keras.datasets import mnist
import keras
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Dense, Dropout, Flatten #定义回调函数的类,用于实时显示loss/acc曲线和导出loss/acc数值
class DrawCallback(Callback):
def __init__(self, runtime_plot=True): # 初始化 self.init_loss = None
self.init_val_loss = None
self.init_acc = None
self.init_val_acc = None
self.runtime_plot = runtime_plot self.xdata = []
self.ydata = []
self.ydata2 = []
self.ydata3 = []
self.ydata4 = []
def _plot(self, epoch=None):
epochs = self.params.get("epochs")
pl.subplot(121) #画第一个图,121表示纵向1个图,横向2个图,当前第1个图
pl.ylim(0, int(self.init_loss*1.2)) #限制坐标轴范围
pl.xlim(0, epochs)
pl.plot(self.xdata, self.ydata,'r', label='loss') #xdata/ydata均为不断增长的一维数组,同时定义了线段颜色/类型/图例
pl.plot(self.xdata, self.ydata2, 'b--', label='val_loss')
pl.xlabel('Epoch {}/{}'.format(epoch or epochs, epochs)) #坐标轴显示变化的标签
pl.ylabel('Loss {:.4f}'.format(self.ydata[-1]))
pl.legend() #显示图例,不加这个即便是定义图例了也没用
pl.title('loss') #显示标题 pl.subplot(122)
pl.ylim(0, 1.2)
pl.xlim(0, epochs)
pl.plot(self.xdata, self.ydata3,'r', label='acc')
pl.plot(self.xdata, self.ydata4, 'b--', label='val_acc')
pl.xlabel('Epoch {}/{}'.format(epoch or epochs, epochs))
pl.ylabel('Loss {:.4f}'.format(self.ydata[-1]))
pl.legend()
pl.title('acc') def _runtime_plot(self, epoch):
self._plot(epoch)
#不断的清图
display.clear_output(wait=True)
display.display(pl.gcf())
pl.gcf().clear() def plot(self):
self._plot()
pl.show() #显示窗口 def on_epoch_end(self, epoch, logs = None): #更新xdata/ydata
logs = logs or {}
# batch_size = self.params.get("batch_size")
epochs = self.params.get("epochs") #获取训练相关数据
loss = logs.get("loss")
val_loss = logs.get("val_loss")
acc = logs.get("acc")
val_acc = logs.get("val_acc") epochs_str = str(epochs)[0:6] #为了写入txt,必须转为字符型,为了美观只保留小数点后4位
loss_str = str(loss)[0:6]
val_loss_str = str(val_loss)[0:6]
acc_str = str(acc)[0:6]
val_acc_str = str(val_acc)[0:6] f = open('logs_r/record.txt','a') #要用追加方式‘a’写入txt,所在行数就是当前迭代次数
f.write('epochs:{}_loss:{}_val_loss:{}_acc:{}_val_acc{}'.format(epochs_str,loss_str,val_loss_str,acc_str,val_acc_str))
f.write('\n')
f.close() if self.init_loss is None: #增加xdata/ydata内容
self.init_loss = loss
self.init_val_loss = val_loss
self.xdata.append(epoch)
self.ydata.append(loss)
self.ydata2.append(val_loss)
self.ydata3.append(acc)
self.ydata4.append(val_acc)
if self.runtime_plot:
self._runtime_plot(epoch) # 下面开始构建keras需要的东西
def viz_keras_fit(runtime_plot=False):
d = DrawCallback(runtime_plot = runtime_plot) #实例化回调函数
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(-1,28,28,1)
x_test = x_test.reshape(-1,28,28,1)
input_shape = (28,28,1)
x_train = x_train/255
x_test = x_test/255
y_train = keras.utils.to_categorical(y_train,10)
y_test = keras.utils.to_categorical(y_test,10)
#为了减小计算量,减少了训练/测试数据
x_train = x_train[0:600,:,:,:]
x_test = x_test[0:100,:,:,:]
y_train = y_train[0:600,:]
y_test = y_test[0:100,:] model = Sequential() #实例化一个模型
#接下来一顿操作,就是搭建网络
model.add(Conv2D(filters=32, kernel_size=(3,3),
activation='relu', input_shape=input_shape,
name='conv1'))
model.add(Conv2D(64,(3,3),activation='relu',name='conv2'))
model.add(MaxPooling2D(pool_size=(2,2),name='pool2'))
model.add(Dropout(0.25,name='dropout1'))
model.add(Flatten(name='flat1'))
model.add(Dense(128,activation='relu'))
model.add(Dropout(0.5,name='dropout2'))
model.add(Dense(10,activation='softmax',name='output'))
#编译网络,同时定义了loss方法/优化方法/监测内容
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
#开始训练
model.fit(x = x_train,
y = y_train,
epochs=30,
verbose=0, #当值为1时,会打印训练过程
validation_data=(x_test, y_test), #加入测试数据,不然有些数据时看不到的
callbacks=[d]) #指定回调函数
return d

  

最后运行:

viz_keras_fit(runtime_plot=True) #调用函数

显示结果:

keras训练实例-python实现的更多相关文章

  1. keras训练cnn模型时loss为nan

    keras训练cnn模型时loss为nan 1.首先记下来如何解决这个问题的:由于我代码中 model.compile(loss='categorical_crossentropy', optimiz ...

  2. Keras 训练 inceptionV3 并移植到OpenCV4.0 in C++

    1. 训练 # --coding:utf--- import os import sys import glob import argparse import matplotlib.pyplot as ...

  3. 使用Keras训练大规模数据集

    官方提供的.flow_from_directory(directory)函数可以读取并训练大规模训练数据,基本可以满足大部分需求.但是在有些场合下,需要自己读取大规模数据以及对应标签,下面提供一种方法 ...

  4. keras训练和保存

    https://cloud.tencent.com/developer/article/1010815 8.更科学地模型训练与模型保存 filepath = 'model-ep{epoch:03d}- ...

  5. Keras 训练一个单层全连接网络的线性回归模型

    1.准备环境,探索数据 import numpy as np from keras.models import Sequential from keras.layers import Dense im ...

  6. Keras 入门实例

    使用Keras构建神经网络的基本工作流程主要可以分为 4个部分.(而这个用法和思路,很像是在使用Scikit-learn中的机器学习方法) Model definition → Model compi ...

  7. 使用Keras训练神经网络备忘录

    小书匠深度学习 文章太长,放个目录: 1.优化函数的选择 2.损失函数的选择 2.2常用的损失函数 2.2自定义函数 2.1实践 2.2将损失函数自定义为网络层 3.模型的保存 3.1同时保持结构和权 ...

  8. keras训练大量数据的办法

    最近在做一个鉴黄的项目,数据量比较大,有几百个G,一次性加入内存再去训练模青型是不现实的. 查阅资料发现keras中可以用两种方法解决,一是将数据转为tfrecord,但转换后数据大小会方法不好:另外 ...

  9. 【机器学习实战学习笔记(1-2)】k-近邻算法应用实例python代码

    文章目录 1.改进约会网站匹配效果 1.1 准备数据:从文本文件中解析数据 1.2 分析数据:使用Matplotlib创建散点图 1.3 准备数据:归一化特征 1.4 测试算法:作为完整程序验证分类器 ...

随机推荐

  1. 万字超强图文讲解AQS以及ReentrantLock应用(建议收藏)

    | 好看请赞,养成习惯 你有一个思想,我有一个思想,我们交换后,一个人就有两个思想 If you can NOT explain it simply, you do NOT understand it ...

  2. Java实现 LeetCode 46 全排列

    46. 全排列 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2] ...

  3. Java实现 LeetCode 38 外观数列

    38. 外观数列 「外观数列」是一个整数序列,从数字 1 开始,序列中的每一项都是对前一项的描述.前五项如下: 1 11 21 1211 111221 1 被读作 "one 1" ...

  4. java实现第四届蓝桥杯梅森素数

    梅森素数 题目描述 如果一个数字的所有真因子之和等于自身,则称它为"完全数"或"完美数" 例如:6 = 1 + 2 + 3 28 = 1 + 2 + 4 + 7 ...

  5. TZOJ 车辆拥挤相互往里走

    102路公交车是crq经常坐的,闲来无聊,他想知道最高峰时车上有多少人,他发现这辆车只留一个门上下人,于是他想到了一个办法,上车时先数一下车上人员数目(crq所上的站点总是人不太多),之后就坐在车门口 ...

  6. Android9.0配置charles的https抓包

    问题: 按照charles的正常流程去安装证书后,然后使用手机(一加5T,安卓9.0)访问https站点发现有些CONNECT请求无法查看,但是其它类型都支持https 解决方案: 前提条件:手机已经 ...

  7. ntpq无法查询同步信息,显示The specified class was not found

    年初时工班发现工作站和服务器都没办法用ntpq看时钟同步了,如下图所示.输入ntpq-p 就显示"The specified class was not found" 通过排查,发 ...

  8. [C#.NET 拾遗补漏]02:数组的几个小知识

    阅读本文大概需要 1.5 分钟. 数组本身相对来说比较简单,能想到的可写的东西不多.但还是有一些知识点值得总结和知晓一  下.有的知识点,知不知道不重要,工作中用的时候搜索一下就可以了,毕竟实现一个功 ...

  9. thinkphp5升级thinkphp6完整步骤

    在php.ini文件中  打开  php_openssl扩展,去掉前面的;extension=php_openssl.dll 在phpstudy的WWW目录打开cmd,输入composer creat ...

  10. SpringSceurity(3)---图形验证码功能实现

    SpringSceurity(3)---图形验证码功能实现 有关springSceurity之前有写过两篇文章: 1.SpringSecurity(1)---认证+授权代码实现 2.SpringSec ...