On the way home, Karen decided to stop by the supermarket to buy some groceries.

She needs to buy a lot of goods, but since she is a student her budget is still quite limited. In fact, she can only spend up to b dollars.

The supermarket sells n goods. The i-th good can be bought for ci dollars. Of course, each good can only be bought once.

Lately, the supermarket has been trying to increase its business. Karen, being a loyal customer, was given n coupons. If Karen purchases the i-th good, she can use the i-th coupon to decrease its price by di. Of course, a coupon cannot be used without buying the corresponding good.

There is, however, a constraint with the coupons. For all i ≥ 2, in order to use the i-th coupon, Karen must also use the xi-th coupon (which may mean using even more coupons to satisfy the requirement for that coupon).

Karen wants to know the following. What is the maximum number of goods she can buy, without exceeding her budget b?

Input

The first line of input contains two integers n and b (1 ≤ n ≤ 5000, 1 ≤ b ≤ 109), the number of goods in the store and the amount of money Karen has, respectively.

The next n lines describe the items. Specifically:

  • The i-th line among these starts with two integers, ci and di (1 ≤ di < ci ≤ 109), the price of the i-th good and the discount when using the coupon for the i-th good, respectively.
  • If i ≥ 2, this is followed by another integer, xi (1 ≤ xi < i), denoting that the xi-th coupon must also be used before this coupon can be used.
Output

Output a single integer on a line by itself, the number of different goods Karen can buy, without exceeding her budget.

Examples
Input
6 16
10 9
10 5 1
12 2 1
20 18 3
10 2 3
2 1 5
Output
4
Input
5 10
3 1
3 1 1
3 1 2
3 1 3
3 1 4
Output
5
Note

In the first test case, Karen can purchase the following 4 items:

  • Use the first coupon to buy the first item for 10 - 9 = 1 dollar.
  • Use the third coupon to buy the third item for 12 - 2 = 10 dollars.
  • Use the fourth coupon to buy the fourth item for 20 - 18 = 2 dollars.
  • Buy the sixth item for 2 dollars.

The total cost of these goods is 15, which falls within her budget. Note, for example, that she cannot use the coupon on the sixth item, because then she should have also used the fifth coupon to buy the fifth item, which she did not do here.

In the second test case, Karen has enough money to use all the coupons and purchase everything.

树上背包,F[x][j][0/1]表示x子节点和本身中,选j个,当前节点是否打折(0/1)

方程式:

F[x][j+k][0]=min(F[x][j+k][0],F[u][k][0]+F[x][j][0])
F[x][j+k][1]=min(F[x][j+k][1],F[u][k][1]+F[x][j][1])
F[x][j+k][1]=min(F[x][j+k][1],F[u][k][0]+F[x][j][1])

注意初始化和边界调节:

F[x][0][0]是要赋为0的,因为当前节点不打折时是可以不选的,而F[x][0][1]不能.

虽然是n^3但能过,就没必要打多叉树转二叉树

转载自YZH神犇%%%%OTTTTTZ

http://www.cnblogs.com/Yuzao/p/7074373.html

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
struct Node
{
int next,to;
}edge[];
int head[],num,n,size[];
lol b,w[],d[],v[],f[][][];
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
void dfs(int x)
{int i,j,k;
f[x][][]=;
f[x][][]=v[x];
f[x][][]=w[x];
size[x]=;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
dfs(v);
for (j=size[x];j>=;j--)
{
for (k=;k<=size[v];k++)
{
f[x][j+k][]=min(f[x][j+k][],f[x][j][]+f[v][k][]);
f[x][j+k][]=min(f[x][j+k][],f[v][k][]+f[x][j][]);
f[x][j+k][]=min(f[x][j+k][],f[v][k][]+f[x][j][]);
}
}
size[x]+=size[v];
}
}
int main()
{int i,fa;
cin>>n>>b;
scanf("%I64d%I64d",&w[],&d[]);
v[]=w[]-d[];
for (i=;i<=n;i++)
{
scanf("%I64d%I64d%d",&w[i],&d[i],&fa);
v[i]=w[i]-d[i];
add(fa,i);
}
memset(f,/,sizeof(f));
dfs();
for (i=n;i>=;i--)
if (f[][i][]<=b||f[][i][]<=b)
{
cout<<i<<endl;
return ;
}
}

codeforces 815C Karen and Supermarket的更多相关文章

  1. Codeforces 815C Karen and Supermarket 树形dp

    Karen and Supermarket 感觉就是很普通的树形dp. dp[ i ][ 0 ][ u ]表示在 i 这棵子树中选择 u 个且 i 不用优惠券的最小花费. dp[ i ][ 1 ][ ...

  2. Codeforces 815C. Karen and Supermarket【树形DP】

    LINK 思路 首先发现依赖关系是一个树形的结构 然后因为直接算花多少钱来统计贡献不是很好 因为数组开不下 那就可以算一个子树里面选多少个的最小代价就可以了 注意统计贡献的时候用优惠券的答案只能在1号 ...

  3. CodeForces 816E Karen and Supermarket ——(树形DP)

    题意:有n件商品,每件商品都最多只能被买一次,且有一个原价和一个如果使用优惠券以后可以减少的价格,同时,除了第一件商品以外每件商品都有一个xi属性,表示买这个商品时如果要使用优惠券必须已经使用了xi的 ...

  4. Codeforces Round #419 (Div. 1) C. Karen and Supermarket 树形DP

    C. Karen and Supermarket     On the way home, Karen decided to stop by the supermarket to buy some g ...

  5. CodeForces 816B Karen and Coffee(前缀和,大量查询)

    CodeForces 816B Karen and Coffee(前缀和,大量查询) Description Karen, a coffee aficionado, wants to know the ...

  6. CF815C Karen and Supermarket

    题目链接 CF815C Karen and Supermarket 题解 只要在最大化数量的前提下,最小化花费就好了 这个数量枚举ok, dp[i][j][1/0]表示节点i的子树中买了j件商品 i ...

  7. CF815C Karen and Supermarket [树形DP]

    题目传送门 Karen and Supermarket On the way home, Karen decided to stop by the supermarket to buy some gr ...

  8. E. Karen and Supermarket

    E. Karen and Supermarket time limit per test 2 seconds memory limit per test 512 megabytes input sta ...

  9. 【Codeforces 815C】Karen and Supermarket

    Codeforces 815 C 考虑树型dp. \(dp[i][0/1][k]\)表示现在在第i个节点, 父亲节点有没有选用优惠, 这个子树中买k个节点所需要花的最小代价. 然后转移的时候枚举i的一 ...

随机推荐

  1. Vue中的v-cloak用法

    v-cloak 的作用和用法 用法: 这个指令保持在元素上直到关联实例结束编译.和 CSS 规则如 [v-cloak] { display: none } 一起用时,这个指令可以隐藏未编译的 Must ...

  2. UWP 使用Windows.Media.FaceAnalysis.FaceDetector检测人脸

    话说现在检测人脸的技术有很多.有在线AI服务,比如Megvii Face++,Microsoft Cognitive Services,Tencent AI等等.还有本地的库实现的,比如OpenCV. ...

  3. 如何在http请求中使用线程池(干货)

    这段时间对网络爬虫比较感兴趣,实现起来实际上比较简单.无非就是http的web请求,然后对返回的html内容进行内容筛选.本文的重点不在于这里,而在于多线程做http请求.例如我要实现如下场景:我有N ...

  4. 记录python接口自动化测试--主函数(第六目)

    把操作excel的方法封装好后,就可以用准备好的接口用例来循环遍历了 我的接口测试用例如下 主函数代码: run_handle_excel.py# coding:utf-8 from base.run ...

  5. 20155306 2017-2018-1《信息安全系统设计》第二周课堂测试以及myod的实现

    20155306 2017-2018-1<信息安全系统设计>第二周课堂测试以及myod的实现 第二周课堂测验: (注:前两项在课堂已提交,在此不做详解) 第一项: 每个.c一个文件,每个. ...

  6. Beta版本敏捷冲刺每日报告——Day2

    1.情况简述 Beta阶段第二次Scrum Meeting 敏捷开发起止时间 2017.11.3 08:00 -- 2017.11.3 22:00 讨论时间地点 2017.11.3晚9:00,软工所实 ...

  7. Python 实现火车票查询工具

    注意:由于 12306 的接口经常变化,课程内容可能很快过期,如果遇到接口问题,需要根据最新的接口对代码进行适当修改才可以完成实验. 一.实验简介 当你想查询一下火车票信息的时候,你还在上 12306 ...

  8. MySQL 服务安装及命令使用

    MySQL 服务安装及命令使用 课程来源说明 本节实验后续至第17节实验为本课程的进阶篇,都基于 MySQL 官方参考手册制作,并根据实验楼环境进行测试调整改编.在此感谢 MySQL 的开发者,官方文 ...

  9. PostgreSQL 客户端乱码问题

    关于客户端和服务器端的乱码问题, POSTGRESQL字符集问题总结 总结的很详细, 特别棒. 这里让我头痛了很久的问题在于 终端 上字符编码的问题, 由于我的mbp上的 iterm2 的默认编码为 ...

  10. IE浏览器支持响应式网站设计

    目前响应式网站设计比较流行, 下面是摘自百度百科有关响应式设计的定义. 响应式网站设计是一种网络页面设计布局,其理念是:集中创建页面的图片排版大小,可以智能地根据用户行为以及使用的设备环境进行相对应的 ...