poj 2065 高斯消元(取模的方程组)
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 1735 | Accepted: 1085 |
Description
Recently, it was discovered that if each message is assumed to be transmitted as a sequence of integers a0, a1, ...an-1 the function f (k) = ∑0<=i<=n-1aiki (mod p) always evaluates to values 0 <= f (k) <= 26 for 1
<= k <= n, provided that the correct value of p is used. n is of course the length of the transmitted message, and the ai denote integers such that 0 <= ai < p. p is a prime number that is guaranteed to be larger than n as well as larger than 26.
It is, however, known to never exceed 30 000.
These relationships altogether have been considered too peculiar for being pure coincidences, which calls for further investigation.
The linguists at the faculty of Langues et Cultures Extraterrestres transcribe these messages to strings in the English alphabet to make the messages easier to handle while trying to interpret their meanings. The transcription procedure simply assigns the letters
a..z to the values 1..26 that f (k) might evaluate to, such that 1 = a, 2 = b etc. The value 0 is transcribed to '*' (an asterisk). While transcribing messages, the linguists simply loop from k = 1 to n, and append the character corresponding to the value
of f (k) at the end of the string.
The backward transcription procedure, has however, turned out to be too complex for the linguists to handle by themselves. You are therefore assigned the task of writing a program that converts a set of strings to their corresponding Extra Terrestial number
sequences.
Input
The only allowed characters in the string are the lower case letters 'a'..'z' and '*' (asterisk). No string will be longer than 70 characters.
Output
Sample Input
3
31 aaa
37 abc
29 hello*earth
Sample Output
1 0 0
0 1 0
8 13 9 13 4 27 18 10 12 24 15
题意:
表示最开始并没有看懂题目是什么意思,那一串字母代表f[i]的值
f(k) = ∑0<=i<=n-1aiki (mod p)转换成方程组便是,
a0*1^0 + a1*1^1+a2*1^2+........+an-1*1^(n-1) = f(1)
a0*2^0 + a1*2^1+a2*2^2+........+an-1*2^(n-1) = f(2)
......
a0*n^0 + a1*n^1+a2*n^2+........+an-1*n^(n-1) = f(n)
/*
poj 2065
解对mod取模的方程组
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld; using namespace std;
const int maxn = 105; int equ,var;
int a[maxn][maxn];
int b[maxn][maxn];
int x[maxn];
int free_x[maxn];
int free_num;
int n;
void debug()
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j <= n; j++)
printf("%d ",a[i][j]);
printf("\n");
}
} int gcd(int a,int b)
{
while(b)
{
int tmp = b;
b = a%b;
a = tmp;
}
return a;
} int lcm(int a,int b)
{
return a/gcd(a,b)*b;
} int Gauss(int mod)
{
int max_r,col,k;
free_num = 0;
for(k = 0,col = 0; k < equ && col < var; k++,col++)
{
max_r = k;
for(int i = k+1; i < equ; i++)
{
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == 0)
{
k --;
free_x[free_num++] = col;
continue;
}
if(max_r != k)
{
for(int j = col; j < var+1; j++)
swap(a[k][j],a[max_r][j]); }
for(int i = k + 1; i < equ; i++)
{
if(a[i][col] != 0)
{
int LCM = lcm(abs(a[i][col]),abs(a[k][col]));
int ta = LCM / abs(a[i][col]);
int tb = LCM / abs(a[k][col]);
if(a[i][col] * a[k][col] < 0) tb = -tb;
for(int j = col; j < var+1; j++)
{
a[i][j] = ((a[i][j]*ta - a[k][j]*tb)%mod+mod)%mod;
}
}
} }
for(int i = k; i < equ; i++)
if(a[i][col] != 0)
return -1;
if(k < var) return var-k; for(int i = var-1; i >= 0; i--)
{
ll temp = a[i][var];
for(int j = i +1; j < var; j++)
temp =((temp- a[i][j]*x[j])%mod+mod)%mod;
while(temp % a[i][i]) temp += mod;
temp /= a[i][i];
temp %= mod; x[i] = temp;
}
return 0; } void ini()
{
memset(a,0,sizeof(a));
memset(x,0,sizeof(x));
equ = n;
var = n;
} char str[105];
int main()
{
int T,p;
scanf("%d",&T);
while(T--)
{
scanf("%d",&p);
scanf("%s",str);
n = strlen(str);
ini();
for(int i=0; i<n; i++)
{
if(str[i]=='*')
a[i][n]=0;
else
a[i][n]=str[i]-'a'+1;
a[i][0]=1;
for(int j=1; j<n; j++)
a[i][j]=(a[i][j-1]*(i+1))%p;
} //debug();
Gauss(p); for(int i = 0; i < n-1; i++)
printf("%d ",x[i]);
printf("%d\n",x[n-1]);
}
return 0;
}
poj 2065 高斯消元(取模的方程组)的更多相关文章
- POJ 2065 高斯消元求解问题
题目大意: f[k] = ∑a[i]*k^i % p 每一个f[k]的值就是字符串上第 k 个元素映射的值,*代表f[k] = 0 , 字母代表f[k] = str[i]-'a'+1 把每一个k^i求 ...
- 2017湘潭赛 A题 Determinant (高斯消元取模)
链接 http://202.197.224.59/OnlineJudge2/index.php/Problem/read/id/1260 今年湘潭的A题 题意不难 大意是把n*(n+1)矩阵去掉某一列 ...
- POJ 2065 SETI (高斯消元 取模)
题目链接 题意: 输入一个素数p和一个字符串s(只包含小写字母和‘*’),字符串中每个字符对应一个数字,'*'对应0,‘a’对应1,‘b’对应2.... 例如str[] = "abc&quo ...
- 【poj1830-开关问题】高斯消元求解异或方程组
第一道高斯消元题目~ 题目:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关 ...
- bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)
http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...
- 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组
[题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...
- POJ SETI 高斯消元 + 费马小定理
http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我 ...
- POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题
http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...
- POJ 1222 EXTENDED LIGHTS OUT(高斯消元解异或方程组)
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 10835 Accepted: 6 ...
随机推荐
- 团队作业4——第一次项目冲刺(Alpha版本)2017.11.19
第三次会议:2017-11-16 第二次会议讨论的还没有完全实现,于是在第三次会议上对此进行了一些对我们工作上的看法,得出结论:多花时间啊!!!! 又没照照片图: 会议主要内容: 1.登录注册完善 2 ...
- JAVAGUI设计步骤
①创建容器 首先要创建一个GUI应用程序,需要创建一个用于容纳所有其它GUI组件元素的载体,Java中称为容器.典型的包括窗口(Window).框架(Frame/JFrame).对话框(Dialog/ ...
- JAVA_SE基础——53.什么是异常?
尽管人人都希望自己的身体健康,处理事情都能顺利进行, 但是在实际生活中总会遇到各种状况,比如,感冒发烧,电脑突然蓝屏死机等..程序也一样,程序在运行过程中,也会发生各种非正常状况,比如程序运行时磁盘不 ...
- GIT的安装及命令使用
http://blog.jobbole.com/78960/ 因此:多人协作工作模式一般是这样的: 首先,可以试图用git push origin branch-name推送自己的修改. 如果推送失败 ...
- istio入门(03)istio的helloworld-场景说明
一.原生应用 四个微服务: python微服务:一个deployment(deployment含有一个pod,pod内含有一个容器) java微服务:三个deployment(deployment含有 ...
- 移动端登录页面input获取焦点后页面布局及输入框上移的问题
最近切微信页面的时候,发现移动端的登录页面,带输入框的那种,如图: 从页面本身来看没有什么问题,上传至测试服务器,用iphone访问也没有什么问题,但是当同事用Android手机获取焦点后,问题来了, ...
- Tesseract-OCR4.0识别中文与训练字库实例
关于中文的识别,效果比较好而且开源的应该就是Tesseract-OCR了,所以自己亲身试用一下,分享到博客让有同样兴趣的人少走弯路. 文中所用到的身份证图片资源是百度找的,如有侵权可联系我删除. 一. ...
- logback中appender继承
实例: <?xml version="1.0" encoding="UTF-8"?> <configuration debug="t ...
- Hibernate(十一):映射继承关系的三种方案
背景: 在一些项目中,会采用集成的关系来定义数据库实体类,比如:人(Person)与学生(Student),学生来源与人,所以人的基本属性学生也拥有:但学生有的一些属性,人就不具有.人与学生之间很显然 ...
- Downloader Middleware
downloader middleware作用:改写请求,如加入代理,加入头部等:处理异常等. # downloadMiddleware举例, 加代理 # 这里的类如果已经重新设置名称,记得在sett ...