SETI
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 1735   Accepted: 1085

Description

For some years, quite a lot of work has been put into listening to electromagnetic radio signals received from space, in order to understand what civilizations in distant galaxies might be trying to tell us. One signal source that has been of particular interest to the scientists at Universit´e de Technologie Spatiale is the Nebula Stupidicus. 
Recently, it was discovered that if each message is assumed to be transmitted as a sequence of integers a0, a1, ...an-1 the function f (k) = ∑0<=i<=n-1aiki (mod p) always evaluates to values 0 <= f (k) <= 26 for 1
<= k <= n, provided that the correct value of p is used. n is of course the length of the transmitted message, and the ai denote integers such that 0 <= ai < p. p is a prime number that is guaranteed to be larger than n as well as larger than 26.
It is, however, known to never exceed 30 000. 
These relationships altogether have been considered too peculiar for being pure coincidences, which calls for further investigation. 
The linguists at the faculty of Langues et Cultures Extraterrestres transcribe these messages to strings in the English alphabet to make the messages easier to handle while trying to interpret their meanings. The transcription procedure simply assigns the letters
a..z to the values 1..26 that f (k) might evaluate to, such that 1 = a, 2 = b etc. The value 0 is transcribed to '*' (an asterisk). While transcribing messages, the linguists simply loop from k = 1 to n, and append the character corresponding to the value
of f (k) at the end of the string. 
The backward transcription procedure, has however, turned out to be too complex for the linguists to handle by themselves. You are therefore assigned the task of writing a program that converts a set of strings to their corresponding Extra Terrestial number
sequences.

Input

On the first line of the input there is a single positive integer N, telling the number of test cases to follow. Each case consists of one line containing the value of p to use during the transcription of the string, followed by the actual string to be transcribed.
The only allowed characters in the string are the lower case letters 'a'..'z' and '*' (asterisk). No string will be longer than 70 characters.

Output

For each transcribed string, output a line with the corresponding list of integers, separated by space, with each integer given in the order of ascending values of i.

Sample Input

3
31 aaa
37 abc
29 hello*earth

Sample Output

1 0 0
0 1 0
8 13 9 13 4 27 18 10 12 24 15

题意:

表示最开始并没有看懂题目是什么意思,那一串字母代表f[i]的值

f(k) = ∑0<=i<=n-1aiki (mod p)转换成方程组便是,

a0*1^0 + a1*1^1+a2*1^2+........+an-1*1^(n-1) = f(1)

a0*2^0 + a1*2^1+a2*2^2+........+an-1*2^(n-1) = f(2)

......

a0*n^0 + a1*n^1+a2*n^2+........+an-1*n^(n-1) = f(n)

然后利用高斯消元求解 

/*
poj 2065
解对mod取模的方程组
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld; using namespace std;
const int maxn = 105; int equ,var;
int a[maxn][maxn];
int b[maxn][maxn];
int x[maxn];
int free_x[maxn];
int free_num;
int n;
void debug()
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j <= n; j++)
printf("%d ",a[i][j]);
printf("\n");
}
} int gcd(int a,int b)
{
while(b)
{
int tmp = b;
b = a%b;
a = tmp;
}
return a;
} int lcm(int a,int b)
{
return a/gcd(a,b)*b;
} int Gauss(int mod)
{
int max_r,col,k;
free_num = 0;
for(k = 0,col = 0; k < equ && col < var; k++,col++)
{
max_r = k;
for(int i = k+1; i < equ; i++)
{
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == 0)
{
k --;
free_x[free_num++] = col;
continue;
}
if(max_r != k)
{
for(int j = col; j < var+1; j++)
swap(a[k][j],a[max_r][j]); }
for(int i = k + 1; i < equ; i++)
{
if(a[i][col] != 0)
{
int LCM = lcm(abs(a[i][col]),abs(a[k][col]));
int ta = LCM / abs(a[i][col]);
int tb = LCM / abs(a[k][col]);
if(a[i][col] * a[k][col] < 0) tb = -tb;
for(int j = col; j < var+1; j++)
{
a[i][j] = ((a[i][j]*ta - a[k][j]*tb)%mod+mod)%mod;
}
}
} }
for(int i = k; i < equ; i++)
if(a[i][col] != 0)
return -1;
if(k < var) return var-k; for(int i = var-1; i >= 0; i--)
{
ll temp = a[i][var];
for(int j = i +1; j < var; j++)
temp =((temp- a[i][j]*x[j])%mod+mod)%mod;
while(temp % a[i][i]) temp += mod;
temp /= a[i][i];
temp %= mod; x[i] = temp;
}
return 0; } void ini()
{
memset(a,0,sizeof(a));
memset(x,0,sizeof(x));
equ = n;
var = n;
} char str[105];
int main()
{
int T,p;
scanf("%d",&T);
while(T--)
{
scanf("%d",&p);
scanf("%s",str);
n = strlen(str);
ini();
for(int i=0; i<n; i++)
{
if(str[i]=='*')
a[i][n]=0;
else
a[i][n]=str[i]-'a'+1;
a[i][0]=1;
for(int j=1; j<n; j++)
a[i][j]=(a[i][j-1]*(i+1))%p;
} //debug();
Gauss(p); for(int i = 0; i < n-1; i++)
printf("%d ",x[i]);
printf("%d\n",x[n-1]);
}
return 0;
}

  

poj 2065 高斯消元(取模的方程组)的更多相关文章

  1. POJ 2065 高斯消元求解问题

    题目大意: f[k] = ∑a[i]*k^i % p 每一个f[k]的值就是字符串上第 k 个元素映射的值,*代表f[k] = 0 , 字母代表f[k] = str[i]-'a'+1 把每一个k^i求 ...

  2. 2017湘潭赛 A题 Determinant (高斯消元取模)

    链接 http://202.197.224.59/OnlineJudge2/index.php/Problem/read/id/1260 今年湘潭的A题 题意不难 大意是把n*(n+1)矩阵去掉某一列 ...

  3. POJ 2065 SETI (高斯消元 取模)

    题目链接 题意: 输入一个素数p和一个字符串s(只包含小写字母和‘*’),字符串中每个字符对应一个数字,'*'对应0,‘a’对应1,‘b’对应2.... 例如str[] = "abc&quo ...

  4. 【poj1830-开关问题】高斯消元求解异或方程组

    第一道高斯消元题目~ 题目:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关 ...

  5. bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...

  6. 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组

    [题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...

  7. POJ SETI 高斯消元 + 费马小定理

    http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我 ...

  8. POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题

    http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...

  9. POJ 1222 EXTENDED LIGHTS OUT(高斯消元解异或方程组)

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10835   Accepted: 6 ...

随机推荐

  1. nyoj 复杂度

    复杂度 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 for(i=1;i<=n;i++) for(j=i+1;j<=n;j++) for(k=j+1;k ...

  2. sql 多条记录插入

    --多条记录插入,用逗号分开值. INSERT dbo.studentinfor ( id, name, class, age, hpsw ) ', -- id - nvarchar(50) N'te ...

  3. MSIL实用指南-生成接口

    本篇讲解怎么样生成接口,即interface. 一.创建类型创建一个接口类型依旧用ModuleBuilder的DefineType方法,但是它的第二个参数必须要有TypeAttributes.Inte ...

  4. LeetCode & Q119-Pascal's Triangle II-Easy

    Description: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3 ...

  5. LR之error(一)

    1 录制时频繁卡死的解决方案 添加数据保护 路径:计算机--高级系统设置(环境变量设置的上级窗口)--高级--设置--数据执行保护 更改LR录制设置,将run-time setting的brower改 ...

  6. java实现两个int数交换

    普通方法,进阶方法,大神方法 @Test public void test3(){ int m = 5; int n = 12; //要求m和n交换位置 System.out.println(&quo ...

  7. 【第十九篇】laydate设置起始时间,laydate设置开始时间和结束时间

    laydate设置开始时间后,结束时间不可小于已选择的开始时间 laydate设置结束时间后,开始时间不可小于已选择的结束时间 //设置开始时间 var startDate = laydate.ren ...

  8. (数字IC)低功耗设计入门(八)——物理级低功耗设计&to be continued?

    前面学习了从系统级到门级的低功耗设计,现在简单地了解了一下物理级设计.由于物理级的低功耗设计与后端有关了,这里就不详细学习了.这里主要是学习了一些基本原则,在物理级,进行低功耗设计的基本原则是:    ...

  9. SpringBoot2.x开发案例之整合Quartz任务管理系统

    基于spring-boot 2.x + quartz 的CRUD任务管理系统,适用于中小项目. 基于spring-boot +quartz 的CRUD任务管理系统: https://gitee.com ...

  10. java Hibernate 处理 oracle xmltype类型

    网上关于如何处理oracle xmltype类型的博客很多,我现在分享的是针对具体业务来的,我在oracle数据库entity表中detail插入了一条xmltype类型的数据 xml的详细内容如下: ...