来自FallDream的博客,未经允许,请勿转载,谢谢。


传送门

很奇妙的一道题

首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2,最后输出f[0]即可。

这样我就考虑从FWT之后的数组入手。

首先发现F[0]=1只会让最后的数组全部+1,所以只考虑F[ai]=2的影响。

发现每个项只会是3或者-1,这取决于FWT过程中的取反次数。

所以可以设计一个dp,f[i][x]表示分治到第i层,x是2的方案数,F[i][x]表示....,x是-2的方案数。

这样模拟FWT进行dp即可,最后通过快速幂计算出变换后最终的数组,再逆变换回去就是答案啦。

#include<iostream>
#include<cstring>
#include<cstdio>
#define MN 1048576
#define mod 998244353
using namespace std;
inline int read()
{
int x=;char ch=getchar();
while(ch<''||ch>'') ch=getchar();
while(ch>=''&&ch<='')x=x*+ch-'',ch=getchar();
return x;
}
const int Inv2=(mod+)/;
int s[MN+],S[MN+],n,f[][MN+],F[][MN+],num[MN+],sum; inline int pow(int x,int k)
{
for(sum=;k;k>>=,x=1LL*x*x%mod)
if(k&) sum=1LL*sum*x%mod;
return sum;
} void FWT(int l,int r)
{
if(l==r) return;
int mid=l+r>>;FWT(l,mid);FWT(mid+,r);
for(int i=;i<=mid-l;++i)
{
int x=s[l+i],y=s[mid++i];
s[l+i]=1LL*(x+y)*Inv2%mod;
s[mid++i]=1LL*(x-y+mod)*Inv2%mod;
}
} void Solve(int l,int r,int dep)
{
if(l==r){f[dep][l]=num[l];return;}
int mid=l+r>>;Solve(l,mid,dep+);Solve(mid+,r,dep+);
for(int i=;i<=mid-l;++i)
{
f[dep][l+i]=f[dep+][l+i]+f[dep+][mid++i];
F[dep][l+i]=F[dep+][l+i]+F[dep+][mid++i];
f[dep][mid++i]=f[dep+][l+i]+F[dep+][mid++i];
F[dep][mid++i]=F[dep+][l+i]+f[dep+][mid++i];
}
} int main()
{
n=read();
for(int i=;i<=n;++i) ++num[read()];
Solve(,MN-,);
for(int i=;i<MN;++i)
{
s[i]=pow(,f[][i]);
if(F[][i]&) s[i]=(mod-s[i])%mod;
}
FWT(,MN-);
printf("%d\n",(s[]-+mod)%mod);
return ;
}

[UOJ UNR#2 黎明前的巧克力]的更多相关文章

  1. 【uoj#310】[UNR #2]黎明前的巧克力 FWT

    题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...

  2. [UOJ310][UNR #2]黎明前的巧克力

    uoj description 给你\(n\)个数,求从中选出两个交集为空的非空集合异或和相等的方案数模\(998244353\). sol 其实也就是选出一个集合满足异或和为\(0\),然后把它分成 ...

  3. [FWT] UOJ #310. 【UNR #2】黎明前的巧克力

    [uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...

  4. 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)

    [UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...

  5. uoj310【UNR #2】黎明前的巧克力(FWT)

    uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...

  6. 「UNR#2」黎明前的巧克力

    「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\p ...

  7. 【UNR #2】黎明前的巧克力 解题报告

    [UNR #2]黎明前的巧克力 首先可以发现,等价于求 xor 和为 \(0\) 的集合个数,每个集合的划分方案数为 \(2^{|S|}\) ,其中 \(|S|\) 为集合的大小 然后可以得到一个朴素 ...

  8. UOJ #310 黎明前的巧克力 FWT dp

    LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...

  9. @uoj - 310@ 【UNR #2】黎明前的巧克力

    目录 @description@ @solution@ @accepted code@ @details@ @description@ Evan 和 Lyra 都是聪明可爱的孩子,两年前,Evan 开 ...

随机推荐

  1. oc中protocol、category和继承的区别

    OC中protocol.category和继承的区别以前还是有点迷糊,面试的时候说的有点混乱,现在结合一些资料总结一下. 利用继承,多态是一个很好的保持"对扩展开放.对更改封闭"( ...

  2. DBA 小记 — 分库分表、主从、读写分离

    前言 我在上篇博客 "Spring Boot 的实践与思考" 中比对不同规范的 ORM 框架应用场景的时候提到过主从与读写分离,本篇随笔将针对此和分库分表进行更深入地探讨. 1. ...

  3. python django的ManyToMany简述

    Django的多对多关系 在Django的关系中,有一对一,一对多,多对多的关系 我们这里谈的是多对多的关系 ==我们首先来设计一个用于示例的表结构== # -*- coding: utf-8 -*- ...

  4. 爬虫模块BeautifulSoup

    中文文档:https://www.crummy.com/software/BeautifulSoup/bs4/doc/index.zh.html# 1.1      安装BeautifulSoup模块 ...

  5. SQL Server 实现递归查询

    基础数据/表结构                 Sql 语句 ;With cte(id,pid,TName)As ( Select id,pid,TName Union All Select B.i ...

  6. emqtt 试用(一)安装和测试

    一.安装 http://emqtt.io/docs/v2/getstarted.html http://emqtt.io/docs/v2/advanced.html http://emqtt.io/d ...

  7. spring-oauth-server实践:授权方式1、2、3和授权方式4的token对象.authorities产生方式比较

    授权方式1.2.3和授权方式4的token对象.authorities产生方式不同, 前者使用user_privillege构建, 后者直接使用oauth_client_details.authort ...

  8. 从Mybatis源码理解jdk动态代理默认调用invoke方法

    一.背景最近在工作之余,把开mybatis的源码看了下,决定自己手写个简单版的.实现核心的功能即可.写完之后,执行了一下,正巧在mybatis对Mapper接口的动态代理这个核心代码这边发现一个问题. ...

  9. java中的引用类型的对象存放在哪里

    根据上下文来确定.比如void func(){    Object obj = new Object();//这个obj在函数的栈里.}class Test{   private Object obj ...

  10. API验证及AES加密

    API验证 API验证: a. 发令牌: 静态 PS: 隐患 key被别人获取 b. 动态令牌 PS: (问题越严重)用户生成的每个令牌被黑客获取到,都会破解 c. 高级版本 PS: 黑客网速快,会窃 ...