3597: [Scoi2014]方伯伯运椰子

Time Limit: 30 Sec  Memory Limit: 64 MB
Submit: 594  Solved: 360
[Submit][Status][Discuss]

Description

Input

第一行包含二个整数N,M

接下来M行代表M条边,表示这个交通网络
每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di
接下来一行包含一条边,表示连接起点的边

Output

一个浮点数,保留二位小数。表示答案,数据保证答案大于0

Sample Input

5 10
1 5 13 13 0 412
2 5 30 18 396 148
1 5 33 31 0 39
4 5 22 4 0 786
4 5 13 32 0 561
4 5 3 48 0 460
2 5 32 47 604 258
5 7 44 37 75 164
5 7 34 50 925 441
6 2 26 38 1000 22

Sample Output

103.00

HINT

1<=N<=5000

0<=M<=3000
1<=Ui,Vi<=N+2
0<=Ai,Bi<=500
0<=Ci<=10000
0<=Di<=1000

很容易就可以想到01分数规划,然后思考怎么判断是否有可行解
一次完整的修改应该是找两条路径,一条路径容量扩大1,流量扩大1,另一条流量-1,容量缩小1
如果第一条路径上的边为e1,第二条路径上的边为e2,代价就是 $\sum{a_{e1}}+\sum{d_{e1}}-\sum{d_{e2}}+\sum{b_{e2}}$

可以发现这两条路径除掉前面的公共路径之后可以形成一个无向环,并且一条边的扩容、缩容付出的代价是独立的
得到一个思路:建立双向边,正向边权是扩容代价,如果容量上限不为0,反向边权是缩容代价,否则不建反向边

由于题目的答案分式和变化的容量无直接关系,所以容量变化1和变化x是没有区别的,直接检查容量变化1是否可行
01规划判断的时候,把每个环的权值定义为 $边数*mid+\sum边权$
把每条边权值加上mid后找负环,如果存在负环就有可行解,否则没有

 #include<bits/stdc++.h>
#define N 5010
using namespace std;
const double eps=1e-;
int n,m,tot,fg,hd[N],vis[N];double d[N];
struct edge{int v,w,next;}e[N<<];
void adde(int u,int v,int w){
e[++tot].v=v;
e[tot].next=hd[u];
e[tot].w=w;
hd[u]=tot;
}
void dfs(int u,double x){
vis[u]=;
if(fg)return;
for(int i=hd[u];i;i=e[i].next){
int v=e[i].v;
if(d[v]>d[u]+x+e[i].w){
d[v]=d[u]+x+e[i].w;
if(vis[v]){fg=;return;}
dfs(v,x);
}
}
vis[u]=;
}
bool check(double x){
fg=;memset(d,,sizeof(d));
memset(vis,,sizeof(vis));
for(int i=;i<=n&&!fg;i++)dfs(i,x);
return fg;
}
int main(){
scanf("%d%d",&n,&m);
n+=;int u,v,a,b,c,d;
for(int i=;i<=m;i++){
scanf("%d%d%d%d%d%d",&u,&v,&a,&b,&c,&d);
adde(u,v,b+d);if(c)adde(v,u,a-d);
}
double l=,r=1e6,mid,ans;
while(l+eps<=r){
mid=(l+r)/;
if(check(mid))l=ans=mid;
else r=mid;
}
printf("%.2lf\n",ans);
return ;
}

bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环的更多相关文章

  1. BZOJ3597 SCOI2014方伯伯运椰子(分数规划+spfa)

    即在总流量不变的情况下调整每条边的流量.显然先二分答案变为求最小费用.容易想到直接流量清空跑费用流,但复杂度略有些高. 首先需要知道(不知道也行?)一种平时基本不用的求最小费用流的算法——消圈法.算法 ...

  2. bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]

    3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...

  3. 【BZOJ3597】方伯伯运椰子(分数规划,网络流)

    [BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行 ...

  4. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  5. [HNOI2009]最小圈 分数规划 spfa判负环

    [HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...

  6. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  7. BZOJ3597 [Scoi2014]方伯伯运椰子 【二分 + 判负环】

    题目链接 BZOJ3597 题解 orz一眼过去一点思路都没有 既然是流量网络,就要借鉴网络流的思想了 我们先处理一下那个比值,显然是一个分数规划,我们二分一个\(\lambda = \frac{X ...

  8. POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9703   Accepted: 3299 ...

  9. [P1768]天路(分数规划+SPFA判负环)

    题目描述 “那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了. 和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了 ...

随机推荐

  1. 在Apache中运行Python WSGI应用

    我们介绍如何使用Apache模块mod_wsgi来运行Python WSGI应用. 安装mod_wsgi 我们假设你已经有了Apache和Python环境,在Linux或者Mac上,那第一步自然是安装 ...

  2. 标准C++类std::string的内存共享和Copy-On-Write(写时拷贝)

    标准C++类std::string的内存共享,值得体会: 详见大牛:https://www.douban.com/group/topic/19621165/ 顾名思义,内存共享,就是两个乃至更多的对象 ...

  3. 浅谈 ThreadLocal

    有时,你希望将每个线程数据(如用户ID)与线程关联起来.尽管可以使用局部变量来完成此任务,但只能在本地变量存在时才这样做.也可以使用一个实例属性来保存这些数据,但是这样就必须处理线程同步问题.幸运的是 ...

  4. windows 10下通过python3.6成功搭建jupyter 服务器

    最近通过python学习爬虫技术,发现一个工具jupyter notebook很不错,该工具明显优势通过浏览器可以输入多行python代码,支持在线运行以及运行结果保存功能,在线验证python小模块 ...

  5. python3下搜狗AI API实现

    1.背景 a.搜狗也发布了自己的人工智能 api,包括身份证ocr.名片ocr.文本翻译等API,初试感觉准确率一般般. b.基于python3. c.也有自己的签名生成这块,有了鹅厂的底子,相对写起 ...

  6. centos6.5时间相关

    时间同步 service ntpdate start 开启网络时间同步

  7. 服务器批量管理软件ansible安装以及配置

    1.yum安装(管理主机以及被管理主机都需要安装) yum install epel-release yum install ansible 2.配置管理主机 vim /etc/ansible/hos ...

  8. python/MySQL练习题(二)

    python/MySQL练习题(二) 查询各科成绩前三名的记录:(不考虑成绩并列情况) select score.sid,score.course_id,score.num,T.first_num,T ...

  9. JVM 性能调优监控工具

    声明:本文转自<https://www.cnblogs.com/anxiao/p/6796644.html?utm_source=itdadao&utm_medium=referral& ...

  10. Spring学习之AOP与事务

      一.概述 在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续, ...