Python爬虫入门教程 55-100 python爬虫高级技术之验证码篇
验证码探究
如果你是一个数据挖掘爱好者,那么验证码是你避免不过去的一个天坑,和各种验证码斗争,必然是你成长的一条道路,接下来的几篇文章,我会尽量的找到各种验证码,并且去尝试解决掉它,中间有些技术甚至我都没有见过,来吧,一起Coding吧
数字+字母的验证码
我随便在百度图片搜索了一个验证码,如下
今天要做的是验证码识别中最简单的一种办法,采用pytesseract
解决,它属于Python当中比较简单的OCR识别库
库的安装
使用pytesseract
之前,你需要通过pip 安装一下对应的模块 ,需要两个
pytesseract库还有图像处理的pillow库了
pip install pytesseract
pip install pillow
如果你安装了这两个库之后,编写一个识别代码,一般情况下会报下面这个错误
pytesseract.pytesseract.TesseractNotFoundError: tesseract is not installed or it's not in your path
这是由于你还缺少一部分内容
安装一个Tesseract-OCR软件。这个软件是由Google维护的开源的OCR软件。
下载地址 > https://github.com/tesseract-ocr/tesseract/wiki
中文包的下载地址 > https://github.com/tesseract-ocr/tessdata
选择你需要的版本进行下载即可
pillow库的基本操作
命令 | 释义 |
---|---|
open() | 打开一个图片 from PIL import Image im = Image.open("1.png") im.show() |
save() | 保存文件 |
convert() | convert() 是图像实例对象的一个方法,接受一个 mode 参数,用以指定一种色彩模式,mode 的取值可以是如下几种: · 1 (1-bit pixels, black and white, stored with one pixel per byte) · L (8-bit pixels, black and white) · P (8-bit pixels, mapped to any other mode using a colour palette) · RGB (3x8-bit pixels, true colour) · RGBA (4x8-bit pixels, true colour with transparency mask) · CMYK (4x8-bit pixels, colour separation) · YCbCr (3x8-bit pixels, colour video format) · I (32-bit signed integer pixels) · F (32-bit floating point pixels) |
Filter
from PIL import Image, ImageFilter
im = Image.open(‘1.png’)
# 高斯模糊
im.filter(ImageFilter.GaussianBlur)
# 普通模糊
im.filter(ImageFilter.BLUR)
# 边缘增强
im.filter(ImageFilter.EDGE_ENHANCE)
# 找到边缘
im.filter(ImageFilter.FIND_EDGES)
# 浮雕
im.filter(ImageFilter.EMBOSS)
# 轮廓
im.filter(ImageFilter.CONTOUR)
# 锐化
im.filter(ImageFilter.SHARPEN)
# 平滑
im.filter(ImageFilter.SMOOTH)
# 细节
im.filter(ImageFilter.DETAIL)
Format
format属性定义了图像的格式,如果图像不是从文件打开的,那么该属性值为None;
size属性是一个tuple,表示图像的宽和高(单位为像素);
mode属性为表示图像的模式,常用的模式为:L为灰度图,RGB为真彩色,CMYK为pre-press图像。如果文件不能打开,则抛出IOError异常。
这个地方可以参照一篇博客,写的不错 > https://www.cnblogs.com/mapu/p/8341108.html
验证码识别
注意安装完毕,如果还是报错,请找到模块 pytesseract.py 这个文件,对这个文件进行编辑
一般这个文件在 C:\Program Files\Python36\Lib\site-packages\pytesseract\pytesseract.py
位置
文件中 tesseract_cmd = 'tesseract' 改为自己的地址
例如: tesseract_cmd = 'C:\Program Files (x86)\Tesseract-OCR\tesseract.exe'
如果报下面的BUG,请注意
Error opening data file \Program Files (x86)\Tesseract-OCR\tessdata/chi_sim.traineddata Please make sure the TESSDATA_PREFIX environment variable
解决办法也比较容易,按照它的提示,表示缺失了 TESSDATA_PREFIX 这个环境变量。你只需要在系统环境变量中添加一条即可
将 TESSDATA_PREFIX=C:\Program Files (x86)\Tesseract-OCR 添加环境变量
重启IDE或者重新CMD,然后继续运行代码,这个地方注意需要用管理员运行你的py脚本
步骤分为
- 打开图片 Image.open()
- pytesseract识别图片
import pytesseract
from PIL import Image
def main():
image = Image.open("1.jpg")
text = pytesseract.image_to_string(image,lang="chi_sim")
print(text)
if __name__ == '__main__':
main()
测试英文,数字什么的基本没有问题,中文简直惨不忍睹。空白比较大的可以识别出来。唉~不好用
当然刚才那个7364
十分轻松的就识别出来了。
带干扰的验证码识别
接下来识别如下的验证码,我们首先依旧先尝试一下。运行代码发现没有任何显示。接下来需要对这个图片进行处理
基本原理都是完全一样的
- 彩色转灰度
- 灰度转二值
- 二值图像识别
彩色转灰度
im = im.convert('L')
灰度转二值,解决方案比较成套路,采用阈值分割法,threshold为分割点
def initTable(threshold=140):
table = []
for i in range(256):
if i < threshold:
table.append(0)
else:
table.append(1)
return table
调用
binaryImage = im.point(initTable(), '1')
binaryImage.show()
调整之后
我们还需要对干扰线进行处理。在往下研究去,是图片深入处理的任务,对付小网站的简单验证码,这个办法足够了,本篇博文OVER,下一篇我们继续研究验证码。
参考链接
tesserocr GitHub:https://github.com/sirfz/tesserocr
tesserocr PyPI:https://pypi.python.org/pypi/tesserocr
pytesserocr GitHub:https://github.com/madmaze/pytesseract
pytesserocr PyPI:https://pypi.org/project/pytesseract/
tesseract下载地址:http://digi.bib.uni-mannheim.de/tesseract
tesseract GitHub:https://github.com/tesseract-ocr/tesseract
tesseract 语言包:https://github.com/tesseract-ocr/tessdata
tesseract文档:https://github.com/tesseract-ocr/tesseract/wiki/Documentation
扫码关注微信公众账号,领取2T学习资源
Python爬虫入门教程 55-100 python爬虫高级技术之验证码篇的更多相关文章
- Python爬虫入门教程 56-100 python爬虫高级技术之验证码篇2-开放平台OCR技术
今日的验证码之旅 今天你要学习的验证码采用通过第三方AI平台开放的OCR接口实现,OCR文字识别技术目前已经比较成熟了,而且第三方比较多,今天采用的是百度的. 注册百度AI平台 官方网址:http:/ ...
- Python爬虫入门教程 61-100 写个爬虫碰到反爬了,动手破坏它!
python3爬虫遇到了反爬 当你兴冲冲的打开一个网页,发现里面的资源好棒,能批量下载就好了,然后感谢写个爬虫down一下,结果,一顿操作之后,发现网站竟然有反爬措施,尴尬了. 接下来的几篇文章,我们 ...
- Python爬虫入门教程 58-100 python爬虫高级技术之验证码篇4-极验证识别技术之一
目录 验证码类型 官网最新效果 找个用极验证的网站 拼接验证码图片 编写自动化代码 核心run方法 模拟拖动方法 图片处理方法 初步运行结果 拼接图 图片存储到本地 @ 验证码类型 今天要搞定的验证码 ...
- Python爬虫入门教程 57-100 python爬虫高级技术之验证码篇3-滑动验证码识别技术
滑动验证码介绍 本篇博客涉及到的验证码为滑动验证码,不同于极验证,本验证码难度略低,需要的将滑块拖动到矩形区域右侧即可完成. 这类验证码不常见了,官方介绍地址为:https://promotion.a ...
- Python爬虫入门教程 59-100 python爬虫高级技术之验证码篇5-极验证识别技术之二
图片比对 昨天的博客已经将图片存储到了本地,今天要做的第一件事情,就是需要在两张图片中进行比对,将图片缺口定位出来 缺口图片 完整图片 计算缺口坐标 对比两张图片的所有RBG像素点,得到不一样像素点的 ...
- Python爬虫入门教程 48-100 使用mitmdump抓取手机惠农APP-手机APP爬虫部分
1. 爬取前的分析 mitmdump是mitmproxy的命令行接口,比Fiddler.Charles等工具方便的地方是它可以对接Python脚本. 有了它我们可以不用手动截获和分析HTTP请求和响应 ...
- Python爬虫入门教程 43-100 百思不得姐APP数据-手机APP爬虫部分
1. Python爬虫入门教程 爬取背景 2019年1月10日深夜,打开了百思不得姐APP,想了一下是否可以爬呢?不自觉的安装到了夜神模拟器里面.这个APP还是比较有名和有意思的. 下面是百思不得姐的 ...
- Python爬虫入门教程 37-100 云沃客项目外包网数据爬虫 scrapy
爬前叨叨 2019年开始了,今年计划写一整年的博客呢~,第一篇博客写一下 一个外包网站的爬虫,万一你从这个外包网站弄点外快呢,呵呵哒 数据分析 官方网址为 https://www.clouderwor ...
- Python爬虫入门教程 36-100 酷安网全站应用爬虫 scrapy
爬前叨叨 2018年就要结束了,还有4天,就要开始写2019年的教程了,没啥感动的,一年就这么过去了,今天要爬取一个网站叫做酷安,是一个应用商店,大家可以尝试从手机APP爬取,不过爬取APP的博客,我 ...
随机推荐
- 你需要知道的Android拍照适配方案
拍照功能实现 Android 程序上实现拍照功能的方式分为两种:第一种是利用相机的 API 来自定义相机,第二种是利用 Intent 调用系统指定的相机拍照.下面讲的内容都是针对第二种实现方式的适配. ...
- 循环神经网络(RNN)--学习笔记
一.基本概念 RNN针对的数据是时序数据.RNN它解决了前馈神经网络,无法体现数据时序关系的缺点.在RNN网络中,不仅同一个隐含层的节点可以相互连接,同时隐含层的输入不仅来源于输入层的输入还包括了上一 ...
- hadoop环境运行程序出现 Retrying connect to server 问题
程序运行时出现如下问题: 从网上查资料,有说重启format的..有说/etc/hosts出问题的... 反正都试了一遍..还是有这个问题 后来看日志,发现问题是访问服务器9001端口访问不到..开始 ...
- AE、AS调用时用代码提供许可(不需要添加LicenseControl控件)
private void CheckBindLicense() { ESRI.ArcGIS.RuntimeManager.Bind(ESRI.ArcGIS.ProductCode.EngineOrDe ...
- Java面试官最常问的volatile关键字
在Java相关的职位面试中,很多Java面试官都喜欢考察应聘者对Java并发的了解程度,以volatile关键字为切入点,往往会问到底,Java内存模型(JMM)和Java并发编程的一些特点都会被牵扯 ...
- java算法之超级丑数
问题描述: 写一个程序来找第 n 个超级丑数. 超级丑数的定义是正整数并且所有的质数因子都在所给定的一个大小为 k 的质数集合内. 比如给你 4 个质数的集合 [2, 7, 13, 19], 那么 [ ...
- Python(2)深入Python函数定义
Python学习 Part2:深入Python函数定义 在Python中,可以定义包含若干参数的函数,这里有几种可用的形式,也可以混合使用: 1. 默认参数 最常用的一种形式是为一个或多个参数指定默认 ...
- html5中让页面缩放的4种方法
1.viewport 这种方法,不是所有的浏览器都兼容<meta name="viewport" content="width=640,minimum-scale= ...
- Git Submodule简单操作
基于组件的项目很多,但是如果直接用包的方式直接引用到项目中,如果出现问题很难进行调试的操作,也很难进行组件的优化和管理,所以写了一篇文章来介绍下git submodule的用法,用submodule可 ...
- 在Ubuntu16.04上配置.Net Core 2 环境
一.安装.Net Core SDK 按照官方文档,执行以下命令安装SDK curl https://packages.microsoft.com/keys/microsoft.asc | gpg -- ...