这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验.

某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73743849),但我觉得直觉上的经验更有用,如下:

直觉上的经验:

  1. 一件确定的事: padding 无论取 'SAME' 还是取 'VALID', 它在 conv2d 和 max_pool 上的表现是一致的;
  2. padding = 'SAME' 时,输出并不一定和原图size一致,但会保证覆盖原图所有像素,不会舍弃边上的莫些元素;
  3. padding = 'VALID' 时,输出的size总比原图的size小,有时不会覆盖原图所有元素(既,可能舍弃边上的某些元素).
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np def pooling_show():
a = tf.Variable(tf.random_normal(X))
pooling = tf.nn.max_pool(a, pooling_filter, pooling_strides, padding=pad)
# VALID (1, 2, 2, 7)
# SAME (1, 3, 3, 7) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init) print 'image: '
image = sess.run(a)
print image.shape print 'pooling result: '
res = sess.run(pooling)
print res.shape def conv2d_padding_show():
# [1, 13, 13, 2] ---> [m, height, width, channel]
input = tf.Variable(tf.random_normal(X))
# [6, 6, 2, 7] ---> [height, width, prev_channel, output_channel]
filter = tf.Variable(tf.random_normal(conv2d_filter)) op = tf.nn.conv2d(input, filter, strides=conv2d_strides, padding=pad)
# VALID (1, 2, 2, 7)
# SAME (1, 3, 3, 7) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init) print 'image: '
image = sess.run(input)
print image.shape print 'result: '
res = sess.run(op)
print res.shape pad = 'VALID' # X ---> [m, height, width, channel]
# X = [1, 13, 13, 7]
X = [1, 8, 8, 3] # ---> [1, f, f, 1]
# pooling_filter = [1, 6, 6, 1]
pooling_filter = [1, 2, 2, 1] # ---> [1, s, s, 1]
# pooling_strides = [1, 5, 5, 1]
pooling_strides = [1, 2, 2, 1] # ---> [height, width, prev_channel, output_channel]
# conv2d_filter = [6, 6, 7, 7]
conv2d_filter = [2, 2, 3, 3] # ---> [1, s, s, 1]
# conv2d_strides = [1, 5, 5, 1]
conv2d_strides = [1, 2, 2, 1] # 自己改改 X, fileter, strides 的值,配合直觉经验,会有更好的理解
conv2d_padding_show()
pooling_show()

tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码的更多相关文章

  1. Android网络传输中必用的两个加密算法:MD5 和 RSA (附java完成测试代码)

    MD5和RSA是网络传输中最常用的两个算法,了解这两个算法原理后就能大致知道加密是怎么一回事了.但这两种算法使用环境有差异,刚好互补. 一.MD5算法 首先MD5是不可逆的,只能加密而不能解密.比如明 ...

  2. Pytorch中nn.Conv2d的用法

    Pytorch中nn.Conv2d的用法 nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像. 先看一下接口定义: ...

  3. 关于torch.nn.Conv2d的笔记

    先看一下CLASS有哪些参数: torch.nn.Conv2d( in_channels, out_channels, kernel_size, stride=1, padding=0, dilati ...

  4. PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx

    PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx 在写 PyTorch 代码时,我们会发现一些功能重复的操作,比如卷积.激活.池化等操作.这些操作分别可 ...

  5. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  6. tf.nn.conv2d函数和tf.nn.max_pool函数介绍

    tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 介绍参数: input:指卷积需要输入的 ...

  7. TF-卷积函数 tf.nn.conv2d 介绍

    转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...

  8. tf.nn.conv2d。卷积函数

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  9. tf.nn.conv2d

    tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) input: 指需要做卷积的输入图像,它 ...

随机推荐

  1. istio入门(04)istio的helloworld-部署构建

    参考链接: https://zhuanlan.zhihu.com/p/27512075 安装Istio目前仅支持Kubernetes,在部署Istio之前需要先部署好Kubernetes集群并配置好k ...

  2. Docker学习笔记 - Docker容器的日志

    docker logs  [-f]  [-t]  [--tail]  容器名 -f -t --tail="all" 无参数:返回所有日志 -f 一直跟踪变化并返回 -t 带时间戳返 ...

  3. Docker学习实践 - Docker安装MySql数据库

    Docker安装MySQL数据库 1.Ubuntu安装MySQL安装 (1)安装编译源码需要的包 sudo apt-get install make cmake gcc g++ bison libnc ...

  4. docker实践

    我的docker 学习笔记2   ps axf docker run -d cyf:sshd /usr/sbin -D   docker  ps docker-enter.sh 686 ps axf ...

  5. C#制作ActiveX插件

    首先新建项目--->类库,取名:ActiveXDemo 右键项目属性:应用属性==>程序集信息=>使程序集Com可见, 生成==>输出==>为com互操作注册 新建接口类 ...

  6. 这次彻底理解了Object这个属性

    1.实例化Object对象 实例化Object对象的方式有两种:使用Object构造器和使用对象的字面量.例如: var person1 = { name: '李四' }; var person2 = ...

  7. poj 1639 Picnic Planning 度限制mst

    https://vjudge.net/problem/POJ-1639 题意: 有一群人,他们要去某一个地方,每个车可以装无数个人,给出了n条路,包含的信息有路连接的地方,以及路的长度,路是双向的,但 ...

  8. Hadoop MR编程

    Hadoop开发job需要定一个Map/Reduce/Job(启动MR job,并传入参数信息),以下代码示例实现的功能: 1)将一个用逗号分割的文件,替换为“|”分割的文件: 2)对小文件合并,将文 ...

  9. 不错的ngix/redis/java/android学习地址

    http://blog.csdn.net/xlgen157387/article/details/50051543 徐刘根的博客,好像是“Java后端技术”微信公众号的建立者,反正看到不少关于他的博文 ...

  10. kafka知识体系-kafka设计和原理分析

    kafka设计和原理分析 kafka在1.0版本以前,官方主要定义为分布式多分区多副本的消息队列,而1.0后定义为分布式流处理平台,就是说处理传递消息外,kafka还能进行流式计算,类似Strom和S ...