这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验.

某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73743849),但我觉得直觉上的经验更有用,如下:

直觉上的经验:

  1. 一件确定的事: padding 无论取 'SAME' 还是取 'VALID', 它在 conv2d 和 max_pool 上的表现是一致的;
  2. padding = 'SAME' 时,输出并不一定和原图size一致,但会保证覆盖原图所有像素,不会舍弃边上的莫些元素;
  3. padding = 'VALID' 时,输出的size总比原图的size小,有时不会覆盖原图所有元素(既,可能舍弃边上的某些元素).
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np def pooling_show():
a = tf.Variable(tf.random_normal(X))
pooling = tf.nn.max_pool(a, pooling_filter, pooling_strides, padding=pad)
# VALID (1, 2, 2, 7)
# SAME (1, 3, 3, 7) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init) print 'image: '
image = sess.run(a)
print image.shape print 'pooling result: '
res = sess.run(pooling)
print res.shape def conv2d_padding_show():
# [1, 13, 13, 2] ---> [m, height, width, channel]
input = tf.Variable(tf.random_normal(X))
# [6, 6, 2, 7] ---> [height, width, prev_channel, output_channel]
filter = tf.Variable(tf.random_normal(conv2d_filter)) op = tf.nn.conv2d(input, filter, strides=conv2d_strides, padding=pad)
# VALID (1, 2, 2, 7)
# SAME (1, 3, 3, 7) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init) print 'image: '
image = sess.run(input)
print image.shape print 'result: '
res = sess.run(op)
print res.shape pad = 'VALID' # X ---> [m, height, width, channel]
# X = [1, 13, 13, 7]
X = [1, 8, 8, 3] # ---> [1, f, f, 1]
# pooling_filter = [1, 6, 6, 1]
pooling_filter = [1, 2, 2, 1] # ---> [1, s, s, 1]
# pooling_strides = [1, 5, 5, 1]
pooling_strides = [1, 2, 2, 1] # ---> [height, width, prev_channel, output_channel]
# conv2d_filter = [6, 6, 7, 7]
conv2d_filter = [2, 2, 3, 3] # ---> [1, s, s, 1]
# conv2d_strides = [1, 5, 5, 1]
conv2d_strides = [1, 2, 2, 1] # 自己改改 X, fileter, strides 的值,配合直觉经验,会有更好的理解
conv2d_padding_show()
pooling_show()

tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码的更多相关文章

  1. Android网络传输中必用的两个加密算法:MD5 和 RSA (附java完成测试代码)

    MD5和RSA是网络传输中最常用的两个算法,了解这两个算法原理后就能大致知道加密是怎么一回事了.但这两种算法使用环境有差异,刚好互补. 一.MD5算法 首先MD5是不可逆的,只能加密而不能解密.比如明 ...

  2. Pytorch中nn.Conv2d的用法

    Pytorch中nn.Conv2d的用法 nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像. 先看一下接口定义: ...

  3. 关于torch.nn.Conv2d的笔记

    先看一下CLASS有哪些参数: torch.nn.Conv2d( in_channels, out_channels, kernel_size, stride=1, padding=0, dilati ...

  4. PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx

    PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx 在写 PyTorch 代码时,我们会发现一些功能重复的操作,比如卷积.激活.池化等操作.这些操作分别可 ...

  5. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  6. tf.nn.conv2d函数和tf.nn.max_pool函数介绍

    tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 介绍参数: input:指卷积需要输入的 ...

  7. TF-卷积函数 tf.nn.conv2d 介绍

    转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...

  8. tf.nn.conv2d。卷积函数

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  9. tf.nn.conv2d

    tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) input: 指需要做卷积的输入图像,它 ...

随机推荐

  1. .NET CORE 框架ABP的代码生成器(ABP Code Power Tools )使用说明文档

    前言 各位好,又是一个多月没更新文章了. 原因嘛,大家都懂的,太忙了~ 临近年末,公司的项目.年会的做技术支持,同事朋友聚餐也比较频繁. 当然视频教程也没有继续更新.我的锅~ 但是这个月好歹抽空做了一 ...

  2. 刨析Maven(对pom.xml配置文件常用标签的解析)

    昨天在阿里云看到了一句话,"当你Learning和Trying之后,如果能尽量把Teaching也做好,会促进我们思考".共勉! 这是关于Maven的第三篇博客,这次我们深入了解p ...

  3. java线程池01-ThreadPoolExecutor构造方法参数的使用规则

    为了更好的使用多线程,JDK提供了线程池供开发人员使用,目的在于减少线程的创建和销毁次数,以此达到线程的重复利用. 其中ThreadPoolExecutor是线程池中最核心的一个类,我们先简单看一下这 ...

  4. 解决Failed to start component [StandardEngine[Catalina].StandardHost[localhost].StandardContext[/Student_recruit]]

    查看web.xml文件的书写,特别注意路径与命名一致

  5. python request

    python request a. 客户端向服务端发送多层字典的值 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 obj =  ...

  6. python--IO模块

    IO模块 一 IO模型 分为: 1 阻塞IO (accept recv) 2 非阻塞IO 3  IO多路复用(监听多个链接) 4 异步IO 5 驱动信号模型(不经常使用) 1 阻塞IO (blocki ...

  7. mysql安装及常见问题

    下载了MySQL的压缩包,开始配置的时候遇到一大堆问题,下面记录下,也希望对遇到同样问题的你有帮助 开始将压缩包解压到指定文件夹,然后建立一个txt文件命名为my.ini,写入下面的内容 [mysql ...

  8. 什么是web框架

    什么是web框架 web应用框架是支持动态网站.网络应用程序的软件框架. web框架的工作方式:接收http请求并处理,分派代码, 产生html,创建http响应. web框架 通常包含了:url路由 ...

  9. 字符串分割方法split()函数

    >>> data = '1000,小甲鱼,男'>>> data.split(',')['1000', '小甲鱼', '男'] str.split('以什么为标志进行 ...

  10. 处理异常、常用类、反射、类加载与垃圾回收、java集合框架

    异常处理概述 检查异常:检查异常通常是用户错误或者不能被程序员所预见的问题.(cheched) 运行时异常:运行时异常是一个程序在运行过程中可能发生的.可以被程序员避免的异常类型.(Unchecked ...