【BZOJ2959】长跑 (LCT+并查集)
Time Limit: 1000 ms Memory Limit: 256 MB
Description
某校开展了同学们喜闻乐见的阳光长跑活动。为了能“为祖国健康工作五十年”,同学们纷纷离开寝室,离开教室,离开实验室,到操场参加3000米长跑运动。一时间 操场上熙熙攘攘,摩肩接踵,盛况空前。
为了让同学们更好地监督自己,学校推行了刷卡机制。
学校中有n个地点,用1到n的整数表示,每个地点设有若干个刷卡机。
有以下三类事件:
1、修建了一条连接A地点和B地点的跑道。
2、A点的刷卡机台数变为了B。
3、进行了一次长跑。问一个同学从A出发,最后到达B最多可以刷卡多少次。具体的要求如下:
当同学到达一个地点时,他可以在这里的每一台刷卡机上都刷卡。但每台刷卡机只能刷卡一次,即使多次到达同一地点也不能多次刷卡。
为了安全起见,每条跑道都需要设定一个方向,这条跑道只能按照这个方向单向通行。最多的刷卡次数即为在任意设定跑道方向,按照任意路径从A地点到B地点能刷卡的最多次数。
Input
输入的第一行包含两个正整数n,m,表示地点的个数和操作的个数。
第二行包含n个非负整数,其中第i个数为第个地点最开始刷卡机的台数。
接下来有m行,每行包含三个非负整数P,A,B,P为事件类型,A,B为事件的两个参数。
最初所有地点之间都没有跑道。
每行相邻的两个数之间均用一个空格隔开。表示地点编号的数均在1到n之间,每个地点的刷卡机台数始终不超过10000,P=1,2,3。
Output
输出的行数等于第3类事件的个数,每行表示一个第3类事件。如果该情况下存在一种设定跑道方向的方案和路径的方案,可以到达,则输出最多可以刷卡的次数。如果A不能到达B,则输出-1。
Sample Input And Output Are Too Long>_<
Hint
对于100%的数据,m<=5n,任意时刻,每个地点的刷卡机台数不超过10000。
具体每组数据的规模如下
$30\%: n \leq 5000 $
$100\%: 1 \leq n \leq 150000, 1 \leq m \leq 5n, 0 \leq v_i \leq 10000$
题解
PS:我原来以为是有向图结果不会做,后来发现我被题面坑了......
题意是动态维护加入无向边,修改点权的操作;询问对每条边设置方向之后,A到B的点权之和最大值。
如果某一些点构成了双联通分量,那么可以考虑将这些点缩成一个点,其点权为所有点之和,原本连向这些点的边都连向代表点。
那么如果支持动态缩点,那么整个图保持为一棵树,询问A到B即询问树上A所属代表元到B所属代表元的点权和,这可以用LCT维护。
那么看看怎么缩点:
用一个并查集维护每一个点的代表元,怎么维护?
考虑每一次连边$(u,v)$:
首先我们把$u$赋值为$u$的代表元,$v$赋值为$v$的代表元。
1. 如果$u$和$v$原本不连通,那么直接连上。
2.如果$u$和$v$原本已经连通,需要将$u$到$v$的路径缩成一个点,那么就在LCT上提取出$u$到$v$的路径,makeroot(u);access(v);splay(v);放到一棵Splay里就好。干脆就把v当做代表元好了,那么v自带的信息已经是所有点的权值之和,接下来遍历一遍这一棵Splay,将所有点的并查集父亲设置为$v$,就完成了缩点。
那么对于LCT,缩点是怎么体现的呢?
在并查集已经维护好的情况下,我们每次$access(u)$时,原本是迭代为父亲,现在直接迭代为父亲的代表元。为什么这样是对的?对于一棵已经缩点的Splay,从下面的别的Splay$access$上来的时候,不可以再对这些已经缩了的点进行操作了,直接找到代表元来操作。由此,$access$的迭代不再是连续的了;若当前点为$u$,上一个点为$v$,那么要额外修正$v$的父亲为$u$。
这样维护,对于LCT自身的维护是没有影响的,所以不用操心啦。
#include <cstdio>
using namespace std;
typedef long long ll;
const int N=;
int n,m,bl[N];
int ch[N][],fa[N],rev[N];
ll w[N],val[N],sum[N];
inline ll rd(){
ll x=;
char c;
while((c=getchar())<''||c>'');
x=c-'';
while(''<=(c=getchar())&&c<='') x=x*+c-'';
return x;
}
inline int find(int x){return bl[x]==x?x:bl[x]=find(bl[x]);};
inline void swap(int &x,int &y){int t=x;x=y;y=t;}
inline bool isRoot(int u){return ch[fa[u]][]!=u&&ch[fa[u]][]!=u;}
inline bool who(int u){return ch[fa[u]][]==u;}
inline void reverse(int u){
rev[u]^=;
swap(ch[u][],ch[u][]);
}
inline void pushup(int u){
sum[u]=sum[ch[u][]]+sum[ch[u][]]+val[u];
}
inline void rotate(int u){
int f=fa[u],g=fa[f],c=who(u);
if(!isRoot(f)) ch[g][who(f)]=u;
fa[u]=g;
ch[f][c]=ch[u][c^];
if(ch[f][c]) fa[ch[f][c]]=f;
ch[u][c^]=f;
fa[f]=u;
pushup(f);
pushup(u);
}
inline void pd(int u){
if(rev[u]){
if(ch[u][]) reverse(ch[u][]);
if(ch[u][]) reverse(ch[u][]);
rev[u]=;
}
}
inline void pushdown(int u){
if(!isRoot(u)) pushdown(fa[u]);
pd(u);
}
inline void splay(int u){
pushdown(u);
while(!isRoot(u)){
if(!isRoot(fa[u]))
rotate(who(fa[u])==who(u)?fa[u]:u);
rotate(u);
}
}
inline void access(int u){
for(int v=;u;v=u,u=find(fa[u])){
splay(u);
ch[u][]=v;
fa[v]=u;
pushup(u);
}
}
inline void makeRoot(int u){
access(u);
splay(u);
reverse(u);
}
inline bool isConnect(int a,int b){
if(a==b) return true;
makeRoot(a);
access(b);
splay(b);
return fa[a];
}
void shrink(int u,int target){
if(!u) return;
bl[u]=target;
shrink(ch[u][],target);
shrink(ch[u][],target);
}
inline void link(int a,int b){
a=find(a); b=find(b);
if(a==b) return;
if(isConnect(a,b)){
makeRoot(a);
access(b);
splay(b);
shrink(b,b);
val[b]=sum[b];
}
else{
makeRoot(a);
fa[a]=b;
}
}
inline void change(int a,int b){
ll delta=b-w[a];
w[a]=b;
a=find(a);
val[a]+=delta;
sum[a]+=delta;
splay(a);
}
inline ll query(int a,int b){
a=find(a); b=find(b);
if(!isConnect(a,b)) return -;
if(a==b) return val[a];
makeRoot(a);
access(b);
splay(b);
return sum[b];
}
int main(){
n=rd(); m=rd();
for(int i=;i<=n;i++) w[i]=val[i]=rd();
for(int i=;i<=n;i++) bl[i]=i;
int opt,a,b;
while(m--){
opt=rd(); a=rd(); b=rd();
switch(opt){
case : link(a,b); break;
case : change(a,b); break;
case : printf("%lld\n",query(a,b)); break;
}
}
return ;
}
奇妙代码
【BZOJ2959】长跑 (LCT+并查集)的更多相关文章
- BZOJ2959长跑——LCT+并查集(LCT动态维护边双连通分量)
题目描述 某校开展了同学们喜闻乐见的阳光长跑活动.为了能“为祖国健康工作五十年”,同学们纷纷离开寝室,离开教室,离开实验室,到操场参加3000米长跑运动.一时间操场上熙熙攘攘,摩肩接踵,盛况空前. 为 ...
- bzoj2959: 长跑(LCT+并查集)
题解 动态树Link-cut tree(LCT)总结 LCT常数大得真实 没有环,就是\(lct\)裸题吧 有环,我们就可以绕环转一圈,缩点 怎么搞? 当形成环时,把所有点的值全部加到一个点上,用并查 ...
- bzoj2959: 长跑 LCT+并查集+边双联通
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2959 题解 调了半天,终于调完了. 显然题目要求是求出目前从 \(A\) 到 \(B\) 的可 ...
- 【bzoj2959】长跑 LCT+并查集
题目描述 某校开展了同学们喜闻乐见的阳光长跑活动.为了能“为祖国健康工作五十年”,同学们纷纷离开寝室,离开教室,离开实验室,到操场参加3000米长跑运动.一时间操场上熙熙攘攘,摩肩接踵,盛况空前.为了 ...
- BZOJ 2959 长跑 (LCT+并查集)
题面:BZOJ传送门 当成有向边做的发现过不去样例,改成无向边就忘了原来的思路.. 因为成环的点一定都能取到,我们把它们压成一个新点,权值为环上所有点的权值和 这样保证了图是一颗森林 每次询问转化为, ...
- 【bzoj4998】星球联盟 LCT+并查集
题目描述 在遥远的S星系中一共有N个星球,编号为1…N.其中的一些星球决定组成联盟,以方便相互间的交流.但是,组成联盟的首要条件就是交通条件.初始时,在这N个星球间有M条太空隧道.每条太空隧道连接两个 ...
- bzoj 2959: 长跑【LCT+并查集】
如果没有环的话直接LCT 考虑有环怎么办,如果是静态的话就tarjan了,但是这里要动态的缩环 具体是link操作的时候看一下是否成环(两点已联通),成环的话就用并查集把这条链缩到一个点,把权值加给祖 ...
- bzoj4998 星球联盟 LCT + 并查集
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4998 题解 根据题意,就是要动态维护点双,求出一个点双的权值和. 所以这道题就是和 bzoj2 ...
- BZOJ4998星球联盟——LCT+并查集(LCT动态维护边双连通分量)
题目描述 在遥远的S星系中一共有N个星球,编号为1…N.其中的一些星球决定组成联盟,以方便相互间的交流.但是,组成 联盟的首要条件就是交通条件.初始时,在这N个星球间有M条太空隧道.每条太空隧道连接两 ...
随机推荐
- java连接mysql以及增删改查操作
java连接数据库的代码基本是固定的,步骤过程觉得繁琐些,代码记起来对我来说是闹挺.直接上代码: (温馨提醒:你的项目提前导入连接数据库的jar包才有的以下操作 ) class DBConnectio ...
- 自己写的日志框架--linkinLog4j--日志框架的必要性
OK,在开始研究Log4j的源码之前,我们先来自己模拟一个日志工具,名字就叫linkinlog4j好了. 在软件开发过程中,出现bug总是在所难免:事实上,以我个人经验,即使在实际开发阶段,fix b ...
- Linux安装ffmpeg
1.安装ffmpeg 简单步骤: A.首先去官网下载源码包,我的是ffmpeg-3.4.tar.bz2,下载之后上传至Linux准备安装,首先解压安装包: tar -xjvf ffmpeg-3.4 ...
- linux之cut命令简单用法
语法 cut [-bn] [file] cut [-c] [file] cut [-df] [file] 使用说明: cut 命令从文件的每一行剪切字节.字符和字段并将这些字节.字符和字段写至标准输出 ...
- css变量的用法——(--cssName)
CSS变量,又称——CSS自定义属性,现在很多CSS预处理/后处理程序已作了相关快捷的编译处理, 基本用法有哪些呢,我们先看一个简单的栗子:——要求,创建一个五个块元素居中的分栏样式,奇数和偶数同高不 ...
- 针对Chrome谷歌等浏览器不再支持showModalDialog的解决方案
最近在维护一个老项目,之前都是用IE来调试代码的.今天想着测试一下项目的兼容性,就用了谷歌浏览器,然后就遇到这样一个问题:一段用showModalDialog实现弹出模态框和返回值的js代码,在调试时 ...
- VS2012以后版本MFC程序发布记录,支持XP
##概述 自从VS2012之后,增加了新的VC运行时库,而一般用户机器上不一定有对应的版本的运行时库,所以微软官方给出的方案是需要用户安装对应版本的VisualC++Redistributable P ...
- java常用工具类[待补充]
生成指定范围指定大小的随机数: String code = String.valueOf((int)(Math.random()*(9999-1000+1))).substring(0,4);
- 解决nginx [error] open() "usr/local/nginx/logs/nginx.pid" failed错误
重新启动服务器,访问web服务发现无法浏览啦!登陆服务器之 后进到nginx使用./nginx -s reload重新读取配置文件,发现报nginx: [error] open() "/us ...
- chrome下input文本框自动填充背景问题解决
chrome下input文本框会自动填充背景,只需要给文本框加一个样式即可解决问题 input:-webkit-autofill {-webkit-box-shadow: 0 0 0px 1000px ...