Python matplotlib模块,是扩展的MATLAB的一个绘图工具库,它可以绘制各种图形

建议安装 Anaconda后使用 ,集成了很多第三库,基本满足大家的需求,下载地址,对应选择python 2.7 或是 3.5 的就可以了:
https://www.continuum.io/downloads#windows

脚本默认执行方式:
             1.获取当前文件夹下的1.log文件
             2.将数据格式化为矩阵
             3.以矩阵的列索引为x坐标,行索引为y坐标,值为z坐标
             4.绘制曲面图
测试数据
测试所用数据:
 
r_gain=
79.000000f,  89.000000f, 104.000000f, 120.000000f, 135.000000f,
149.000000f, 160.000000f, 172.000000f, 176.000000f, 172.000000f,
164.000000f, 159.000000f, 143.000000f, 128.000000f, 113.000000f, 
97.000000f,  81.000000f,
r_gain=
84.000000f, 100.000000f, 120.000000f, 136.000000f, 156.000000f,
176.000000f, 192.000000f, 204.000000f, 208.000000f, 204.000000f,
196.000000f, 180.000000f, 164.000000f, 144.000000f, 124.000000f,
108.000000f,  92.000000f,
r_gain=
91.000000f, 112.000000f, 132.000000f, 156.000000f, 176.000000f,
200.000000f, 224.000000f, 240.000000f, 248.000000f, 244.000000f,
228.000000f, 208.000000f, 188.000000f, 164.000000f, 140.000000f,
120.000000f,  99.000000f,
r_gain=
99.000000f, 120.000000f, 144.000000f, 172.000000f, 200.000000f,
228.000000f, 256.000000f, 276.000000f, 284.000000f, 280.000000f,
264.000000f, 240.000000f, 208.000000f, 180.000000f, 156.000000f,
132.000000f, 105.000000f,
r_gain=107.000000f,
128.000000f, 156.000000f, 184.000000f, 216.000000f, 256.000000f,
288.000000f, 308.000000f, 320.000000f, 316.000000f, 296.000000f,
264.000000f, 228.000000f, 196.000000f, 164.000000f, 140.000000f,
113.000000f,
r_gain=111.000000f,
132.000000f, 160.000000f, 192.000000f, 232.000000f, 272.000000f,
304.000000f, 332.000000f, 340.000000f, 336.000000f, 316.000000f,
284.000000f, 244.000000f, 204.000000f, 172.000000f, 144.000000f,
117.000000f,
r_gain=109.000000f,
136.000000f, 164.000000f, 196.000000f, 232.000000f, 276.000000f,
312.000000f, 336.000000f, 348.000000f, 344.000000f, 320.000000f,
288.000000f, 248.000000f, 208.000000f, 172.000000f, 144.000000f,
117.000000f,
r_gain=111.000000f,
132.000000f, 160.000000f, 192.000000f, 228.000000f, 268.000000f,
304.000000f, 328.000000f, 340.000000f, 332.000000f, 312.000000f,
280.000000f, 240.000000f, 200.000000f, 168.000000f, 140.000000f,
119.000000f,
r_gain=101.000000f,
128.000000f, 152.000000f, 180.000000f, 212.000000f, 248.000000f,
280.000000f, 304.000000f, 312.000000f, 308.000000f, 288.000000f,
260.000000f, 224.000000f, 192.000000f, 160.000000f, 136.000000f,
109.000000f,
r_gain=
95.000000f, 116.000000f, 140.000000f, 164.000000f, 192.000000f,
224.000000f, 248.000000f, 272.000000f, 280.000000f, 272.000000f,
256.000000f, 232.000000f, 200.000000f, 176.000000f, 152.000000f,
128.000000f, 101.000000f,
r_gain=
87.000000f, 108.000000f, 128.000000f, 148.000000f, 172.000000f,
192.000000f, 216.000000f, 232.000000f, 236.000000f, 232.000000f,
220.000000f, 200.000000f, 180.000000f, 156.000000f, 136.000000f,
116.000000f,  95.000000f,
r_gain=
80.000000f,  96.000000f, 112.000000f, 132.000000f, 148.000000f,
168.000000f, 180.000000f, 192.000000f, 196.000000f, 196.000000f,
184.000000f, 172.000000f, 156.000000f, 136.000000f, 120.000000f,
104.000000f,  88.000000f,
r_gain=
69.000000f,  85.000000f,  96.000000f, 111.000000f, 127.000000f,
141.000000f, 153.000000f, 160.000000f, 164.000000f, 159.000000f,
157.000000f, 145.000000f, 135.000000f, 120.000000f, 104.000000f, 
88.000000f,  77.000000f,

曲面图脚本
# -*- coding: utf-8 -*-
 
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from pandas import DataFrame
 
 
def draw(x, y, z):
    '''
    采用matplolib绘制曲面图
    :param x: x轴坐标数组
    :param y: y轴坐标数组
    :param z: z轴坐标数组
    :return:
    '''
    X = x
    Y = y
    Z = z
 
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.plot_trisurf(X, Y, Z)
    plt.show()
 
if __name__ == '__main__':
    '''
       默认执行方式:
             1.获取当前文件夹下的1.log文件
             2.将数据格式化为矩阵
             3.以矩阵的列索引为x坐标,行索引为y坐标,值为z坐标
             4.绘制曲面图
    '''
    data = {}
    index_origin = 0
    f = open("1.log")
    line = f.readline()
    while line:
        data[index_origin] = line.split('=')[-1].replace(' ', '').split('f,')[0:-1]
        index_origin = index_origin + 1
        line = f.readline()
    f.close()
    df = DataFrame(data)
    df = df.T
 
    x = []
    for i in range(len(df.index)):
        x = x + list(df.columns)
    print(x)
 
    y = []
    for i in range(len(df.index)):
        for m in range(17):
            y.append(i)
    print(y)
 
    z = []
    for i in range(len(df.index)):
        z = z + df[i:i + 1].values.tolist()[0]
    z = map(float, z)
    print (z)
    draw(x, y, z)

【python】pandas & matplotlib 数据处理 绘制曲面图的更多相关文章

  1. python的matplotlib.pyplot绘制甘特图

    博主本来就想简单地找一下代码,画一幅甘特图,结果百度之后发现甘特图的代码基本都不是用matplotlib库,但是像柱状图等统计图通常都是用这个库进行绘制的,所以博主就花了一些时间,自己敲了一份代码,简 ...

  2. python中matplotlib所绘制的图包含了很多的对象

    上图中的top=‘off’意思是说顶部的grid lines 看不见. 去除frame,意思就是将这个矩形给去除掉,spine意思是脊柱 bars = plt.bar(pos, popularity, ...

  3. Python使用matplotlib模块绘制多条折线图、散点图

    用matplotlib模块 #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import rando ...

  4. python 运用numpy库与matplotlib库绘制数据图

    代码一 import numpy as np import matplotlib.pyplot as plt x=np.linspace(0,6,100) y=np.cos(2*np.pi*x)*np ...

  5. Python数据分析-Matplotlib图标绘制

    Matplotlib介绍 Matplotlib是一个强大的Python绘图和数据可视化的工具包. Matplotlib的主要功能 Matplotlib是python中的一个包,主要用于绘制2D图形(当 ...

  6. python使用matplotlib:subplot绘制多个子图

    1 问题描述 matploglib 能够绘制出精美的图表, 有些时候, 我们希望把一组图放在一起进行比较, 有没有什么好的方法呢? matplotlib 中提供的 subplot 可以很好的解决这个问 ...

  7. Python Pandas 时间序列双轴折线图

    时间序列pv-gmv双轴折线图 import numpy as np import pandas as pd import matplotlib.pyplot as plt n = 12 date_s ...

  8. 使用matplotlib库绘制函数图

    函数如下: z = x^2 * y / (x^4 +y^2) 代码如下: import numpy as np import matplotlib.pyplot as plt import mpl_t ...

  9. Python——Pandas 时间序列数据处理

    介绍 Pandas 是非常著名的开源数据处理库,我们可以通过它完成对数据集进行快速读取.转换.过滤.分析等一系列操作.同样,Pandas 已经被证明为是非常强大的用于处理时间序列数据的工具.本节将介绍 ...

随机推荐

  1. win7配上的网关会自动消失?解决

    前几天遇见一台计算机,发现手动设置的ip和网关等...在使用了一会就变成,网关丢失,其他不变...奇怪啊...第一次遇见.后来找了一下.有答案了. 先将客户端卸载掉,再打开网络和共享中心-->本 ...

  2. ORACLE各种小指令

    清空表中所有记录truncate table et_xxxxxx 删除一条数据 DELETE FROM zhubajie_member.mb_web_login WHERE nickname='m_3 ...

  3. Elasticsearch学习之入门

    1.什么是Elasticsearch Elasticsearch是一个基于Apche Lucene的开源实时分布式搜索和分析引擎. 2.安装 安装Elasticsearch的唯一要求是安装官方新版的j ...

  4. Linux命令全称

    知其表亦需知其意 apt = Advanced Packaging Tool ar = archiver as = assembler awk = "Aho Weiberger and Ke ...

  5. Shell 编写准则

    Shell 中备注符号: # 或者 " 作为Shell中的备注符号. 需要注意的是,首行的#!/bin/bash 不是注释 Shell 格式 首行输入  #!/bin/bash 中间输入运行 ...

  6. software_testing_work2_question1(改)_edition

    由于上个版本问题多多,而且测试情况略有呵呵,于是想想还是默默的改进了一个版本. input类 首先呢,是作为输入项的实体类input. 对比之前的版本,新版本(姑且称其为edition2)加强了ope ...

  7. Mac小知识(不定时更新)

    1.显示隐藏文件夹(在mac命令行中输入以下代码即可): 1)显示隐藏文件夹 defaults write com.apple.finder AppleShowAllFiles Yes &&a ...

  8. WPF(WP7、WP8)实现圆形图片

    在WP平台上制作图片圆角其实特别简单, 用Image控件的Clip属性即可(RadiusX-Y设置为图片尺寸的一半) <Image Source="{Binding photo}&qu ...

  9. EasyUI 开发笔记(二)

    接上篇 :EasyUI 开发笔记(一)  (http://www.cnblogs.com/yiayi/p/3485258.html) 这期就简单介绍下, easyui 的 list 展示, 在easy ...

  10. LVM逻辑卷基本概念及LVM的工作原理

    这篇随笔将详细讲解Linux磁盘管理机制中的LVM逻辑卷的基本概念以及LVM的工作原理!!! 一.传统的磁盘管理 其实在Linux操作系统中,我们的磁盘管理机制和windows上的差不多,绝大多数都是 ...