一、DAG的介绍

Directed Acyclic Graph,简称DAG,即有向无环图,有向说明有方向,无环表示不能直接或间接的指向自己。

摘录:有向无环图的动态规划是学习动态规划的基础,很多问题都可以转化为DAG上的最长路、最短路或路径计数问题。

通常需要建图,不复杂的也可以当最长上升子序列处理,就不必建图,但都包含运用有向无环图的思想。

二、例题

有n(1 <= n <= 1000)个矩形,长为a,宽为b。矩形X(a,b)可以嵌套在矩形Y(c,d)中,当且仅当a < c,b < d,或者a < d,b < c。求最大的嵌套数。

三、解题思路

矩形X可以嵌套矩形Y,则从X连条边到Y,矩形不能直接或间接的嵌套自己,所以无环。最大的嵌套次数,就是求这个图上的最长路。

四、代码实现

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdbool>
#include<vector>
#include<algorithm>
using namespace std; const int maxn = + ;
struct Node
{
int x, y;
Node(int x, int y) :x(x), y(y) {}
Node() {}
bool operator < (const Node &n)const {
return (x < n.x&& y < n.y) || (x < n.y&& y < n.x);
}
};
vector<Node>vec;
int n;
int d[maxn]; //d[i]表示从节点i出发的最长路的长度
bool G[maxn][maxn];
int cnt = ; //建图
void creatGraph()
{
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
{
if (vec[i] < vec[j]) G[i][j] = true;
}
} //计算从i出发的最长路径
int dp(int i)
{
int& ans = d[i];
if (ans > ) return ans;
ans = ;
for (int j = ; j < n; j++)
if (G[i][j]) ans = max(ans, dp(j) + );
return ans;
} //解决问题
void slove()
{
creatGraph();
int res = ;
for (int i = ; i < n; i++)
res = max(res, dp(i)); //整体的时间复杂度为O(n^2) printf("Case %d: maximum = %d\n", ++cnt, res);
}
int main()
{
while (scanf("%d", &n) == && n)
{
vec.clear();
memset(d, , sizeof(d));
memset(G, false, sizeof(G));
int x, y;
for (int i = ; i < n; i++)
{
scanf("%d%d", &x, &y);
vec.push_back(Node(x, y));
}
slove();
}
}

当然,这题也可以用最长上升子序列做,可以参考我的前一篇博客。

DAG上的动态规划---嵌套矩形(模板题)的更多相关文章

  1. DAG上的动态规划——嵌套矩阵问题

    问题描述:有n个矩形,每个矩形可以用两个整数a,b描述,表示它的长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d,或者b<c,a<d(相当于把矩形X旋 ...

  2. DAG上的动态规划之嵌套矩形

    题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...

  3. 9.2 DAG上的动态规划

    在有向无环图上的动态规划是学习动态规划的基础,很多问题都可以转化为DAG上的最长路,最短路或路径计数问题 9.2.1 DAG模型 嵌套矩形问题: 矩形之间的可嵌套关系是一种典型的二元关系,二元关系可以 ...

  4. UVa 103 Stacking Boxes --- DAG上的动态规划

    UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...

  5. DAG 上的动态规划(训练指南—大白书)

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.矩形嵌套 题目描述:       ...

  6. 第九章(二)DAG上的动态规划

    DAG上的动态规划: 有向无环图上的动态规划是学习DP的基础,很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 1.没有明确固定起点重点的DAG模型: 嵌套矩形问题:有n个矩形,每个矩形可 ...

  7. UVA 1025 "A Spy in the Metro " (DAG上的动态规划?? or 背包问题??)

    传送门 参考资料: [1]:算法竞赛入门经典:第九章 DAG上的动态规划 题意: Algorithm城市的地铁有 n 个站台,编号为 1~n,共有 M1+M2 辆列车驶过: 其中 M1 辆列车从 1 ...

  8. 嵌套矩形——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.非常多问题都能够转化为DAG上的最长路.最短路或路径计数问题. 题目描写叙述: 有n个矩形,每一个矩 ...

  9. DP入门(2)——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题 ...

随机推荐

  1. LeetCode: 292 Nim Game(easy)

    题目: You are playing the following Nim Game with your friend: There is a heap of stones on the table, ...

  2. 【废弃】JavaScript 删除部分

    创建: 2019/02/26 添加: 2019/02/06 添加Object部分 添加: 2019/03/09 添加Function部分 毕竟自己曾经写的,彻底删得不留痕迹还是舍不得的. 但是的确已经 ...

  3. 豆瓣api获取图片403

    1.问题描述 豆瓣的图片资源在网页中不能正常显示,403禁止访问,把地址放到浏览器中就可以正常访问了? 原因是豆瓣现在有防盗链 2.解决问题 在页面中加上 <meta name="re ...

  4. 2012 Noip提高组 Day2

    1265. [NOIP2012] 同余方程 ★☆   输入文件:mod.in   输出文件:mod.out   简单对比时间限制:1 s   内存限制:128 MB [题目描述] 求关于 x 的同余方 ...

  5. Alcatraz -- 一个神奇的管理插件的Xcode插件

    Install Paste this into your terminal: curl -fsSL https://raw.githubusercontent.com/supermarin/Alcat ...

  6. 安装CocoaPods,ios的库安装工具

    1.需要ruby环境,mac pro自带了 2.终端输入:sudo gem install cocoapods

  7. route(2018.10.24)

    建出最短路图之后\(topsort\)即可. 具体思路: 先用\(dijkstra\)算法在原图中跑出\(1\)号点到\(i\)号节点的最短距离\(dist_1(i)\),将所有边反向后用\(dijk ...

  8. python如何用pip安装模块

    pip去python官网下载 我想写的是安装后怎么做,假设我们要安装pymysql模块 在python交互式模式中运行pip install pymysql 会抛出 语法错误,不知为何. 此时应该找到 ...

  9. JDBC | 查询表数据行数

      两种方法: 1. "select * from userinfo" 利用ResultSet的last和getRow方法来获得ResultSet的总行数,适用于在查询数据的同时统 ...

  10. [题解](数学)BZOJ_1257_余数求和

    来源:https://blog.csdn.net/loi_dqs/article/details/50522975 并不知道为什么是sqrt(n)的段数......书上写的看不懂...... 但是这个 ...