【bzoj1002】[FJOI2007]轮状病毒 矩阵树定理+高精度
题目描述
轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的。一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道。如下图所示
.png)
N轮状病毒的产生规律是在一个N轮状基中删去若干条边,使得各原子之间有唯一的信息通道,例如共有16个不同的3轮状病毒,如下图所示
.png)
输入
第一行有1个正整数n
输出
计算出的不同的n轮状病毒数输出
样例输入
3
样例输出
16
题解
矩阵树定理+高精度
求无向图生成树个数,显然使用矩阵树定理。
然后得到的行列式如下:
(-1和3处是相同的结构,其余位置为0)
然后可以使用高精度小数进行高斯消元,不过这样显然不够优雅。
手推一下这个行列式的性质,可以发现:$F(n)=3*F(n-1)-F(n-2)+2$。
这样就可以直接递推了。
高精度什么的使用Python就好啦。
n = int(input())
f = [0] * 105
f[1] = 1
for i in range(2 , n + 1):
f[i] = 3 * f[i - 1] - f[i - 2] + 2
print(f[n])
【bzoj1002】[FJOI2007]轮状病毒 矩阵树定理+高精度的更多相关文章
- BZOJ 1002 轮状病毒 矩阵树定理
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1002 题目大意: 给定n(N<=100),编程计算有多少个不同的n轮状病毒 思路 ...
- [bzoj1002]轮状病毒-矩阵树定理
Brief Description 求外圈有\(n\)个点的, 形态如图所示的无向图的生成树个数. Algorithm Design \[f(n) = (3*f(n-1)-f(n-2)+2)\] Co ...
- BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】
BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...
- BZOJ1002:[FJOI2007]轮状病毒(找规律,递推)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...
- BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...
- [专题总结]矩阵树定理Matrix_Tree及题目&题解
专题做完了还是要说两句留下什么东西的. 矩阵树定理通俗点讲就是: 建立矩阵A[i][j]=edge(i,j),(i!=j).即矩阵这一项的系数是两点间直接相连的边数. 而A[i][i]=deg(i). ...
- [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)
In some countries building highways takes a lot of time... Maybe that's because there are many possi ...
- BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]
传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
随机推荐
- BOM属性对象方法
本文原链接:https://cloud.tencent.com/developer/article/1018747 BOM 1.window对象 2.location对象 3.history对象 BO ...
- 《队长说得队》【Alpha】Scrum meeting 4
项目 内容 这个作业属于哪个课程 >>2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 >>实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 ...
- laydate时间控件绑定回调事件
onclick="laydate({istime: true, format: 'YYYY-MM-DD',choose:checkDate});" //回调函数内容 functio ...
- PayPal为什么从Java迁移到Node.js 性能提高一倍 文件代码减少44%
大家都知道PayPal是另一家迁移到Node.js平台的大型公司,Jeff Harrell的这篇博文 Node.js at PayPal 解释了为什么从Java迁移出来的原因: 开发效率提高一倍(2 ...
- oracle 命中率
一般在I/O 使用中,为了提高系统处理速度,系统提前将数据读入一块内存区,叫高速缓存,但提前读入的数据未必就是需要的,这就是命中率..计算公式为 命中率=1-(physical reads/(db b ...
- 关于SQL语言的初步认识
关于SQL语言的初步认识 1.一个SQL数据库是表(Table)的集合,它由一个或多个SQL模式定义. 2.一个SQL表由行集构成,一行是列的序列(集合),每列与行对应一个数据项. 3.一个表或者是一 ...
- c++ 调用php
int _System(const char * cmd, std::string& strRet) { FILE * fp; char * p = NULL; ; if ((fp = _po ...
- 【Python项目实战】Pandas:让你像写SQL一样做数据分析(一)
1. 引言 Pandas是一个开源的Python数据分析库.Pandas把结构化数据分为了三类: Series,1维序列,可视作为没有column名的.只有一个column的DataFrame: Da ...
- python3 连接 mysql和mariadb的模块
是pymysql python2中是MySQL-python sudo pip install pymysql 参考博客https://www.jb51.net/article/140387.htm
- selection problem-divide and conquer
思路: 随机选取列表中的一个值v,然后将列表分为小于v的,等于v的,大于v的三组.对于k<=left.size()时, 在left中执行selection:落在中间的,返回v:k>left ...