机器学习之PCA主成分分析
前言
以下内容是个人学习之后的感悟,转载请注明出处~
简介
在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的
信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反
映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立
尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。
降维算法有很多,比如PCA、ICA、SOM、MDS、ISOMAP、LLE等,在此不一一列举。PCA是一种无监督降维算法,
它是最常用的降维算法之一,可以很好地解决因变量太多而复杂性、计算量增大的弊端。
PCA主成分分析原理
1、协方差原理
样本X和样本Y的协方差(Covariance):
协方差为正时说明X和Y是正相关关系,协方差为负时X和Y是负相关关系,协方差为0时X和Y相互独立。Cov(X,X)就是
X的方差(Variance).当样本是n维数据时,它们的协方差实际上是协方差矩阵(对称方阵),方阵的边长是Cn2。比如对于3
维数据(x,y,z),计算它的协方差就是:
2、SVD分解原理
若AX=λX,则称λ是A的特征值,X是对应的特征向量。实际上可以这样理解:矩阵A作用在它的特征向量X上,仅仅使得
X的长度发生了变化,缩放比例就是相应的特征值λ。当A是n阶可逆矩阵时,A与P-1Ap相似,相似矩阵具有相同的特征值。
特别地,当A是对称矩阵时,A的奇异值等于A的特征值,存在正交矩阵Q(Q-1=QT),使得:
对A进行奇异值分解就能求出所有特征值和Q矩阵。A∗Q=Q∗D,D是由特征值组成的对角矩阵由特征值和特征向量的定
义知,Q的列向量就是A的特征向量。
3、PCA原理及实现
PCA主要通过把数据从高维映射到低维来降低特征维度。如下图所示,但映射的时候要保留尽量多的主要信息。
PCA的算法步骤如下:
- 输入数据集x={x(1),x(2),x(3),.....,x(m)}、需要降到K维;
- 对所有样本进行均值归一化,如右图所示;
- 计算协方差矩阵
- 对协方差矩阵进行奇异值分解
;
- 选取最大的前K个特征值对应的特征向量u(1),u(2),u(3),.....,u(k)
- 输出降维的投影特征矩阵Ureduce={u(1),u(2),u(3),.....,u(k)}
- 输出降维后的数据集z=UreduceTx
4、选择降维后的维度K(主成分的个数)
如何选择主成分个数K呢?先来定义两个概念:
选择不同的K值,然后用下面的式子不断计算,选取能够满足下列式子条件的最小K值即可。
其中t值可以由自己定,比如t值取0.01,则代表了该PCA算法保留了99%的主要信息。当你觉得误差需要更小,
你可以把t值设的更小。上式还可以用SVD分解时产生的S矩阵来表示,如下面的式子:
注意1:虽然PCA有降维的效果,也许对避免过拟合有作用,但是最好不要用PCA去作用于过拟合。
注意2:在训练集中找出PCA的主成分,(可以看做为映射 mapping),然后应用到测试集和交叉验
证集中。而不是对所有数据集使用PCA然后再划分训练集,测试集和交叉验证集。
以上是全部内容,如果有什么地方不对,请在下面留言,谢谢~
机器学习之PCA主成分分析的更多相关文章
- 机器学习 - 算法 - PCA 主成分分析
PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优 ...
- 【模式识别与机器学习】——PCA主成分分析
基本思想 其基本思想就是设法提取数据的主成分(或者说是主要信息),然后摒弃冗余信息(或次要信息),从而达到压缩的目的.本文将从更深的层次上讨论PCA的原理,以及Kernel化的PCA. 引子 首先我们 ...
- PCA主成分分析+白化
参考链接:http://deeplearning.stanford.edu/wiki/index.php/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90 h ...
- 机器学习算法-PCA降维技术
机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特 ...
- 数学之路(3)-机器学习(3)-机器学习算法-PCA
PCA 主成分分析(Principal components analysis,PCA),维基百科给出一个较容易理解的定义:“PCA是一个正交化线性变换,把数据变换到一个新的坐标系统中,使得这一数据的 ...
- 用PCA(主成分分析法)进行信号滤波
用PCA(主成分分析法)进行信号滤波 此文章从我之前的C博客上导入,代码什么的可以参考matlab官方帮助文档 现在网上大多是通过PCA对数据进行降维,其实PCA还有一个用处就是可以进行信号滤波.网上 ...
- PCA主成分分析Python实现
作者:拾毅者 出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源代码:https://github.com/c ...
- 机器学习(七) PCA与梯度上升法 (上)
一.什么是PCA 主成分分析 Principal Component Analysis 一个非监督学的学习算法 主要用于数据的降维 通过降维,可以发现更便于人类理解的特征 其他应用:可视化:去噪 第一 ...
- PCA(主成分分析)方法浅析
PCA(主成分分析)方法浅析 降维.数据压缩 找到数据中最重要的方向:方差最大的方向,也就是样本间差距最显著的方向 在与第一个正交的超平面上找最合适的第二个方向 PCA算法流程 上图第一步描述不正确, ...
随机推荐
- python(21)- python内置函数练习
题目一:用map来处理字符串列表啊,把列表中所有人都变成sb,比方alex_sbname=['alex','wupeiqi','yuanhao'] name=['alex','wupeiqi','yu ...
- vs2012编译ffmpeg
从官方网站down下来的ffmpeg没有pdb文件不方便调试,为此使用VS2012编译ffmpeg. 编译步骤: 一.安装MinGW,具体的安装方法上一篇文章已经有介绍这里不在赘述. 二.下载文件并放 ...
- 通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core? .Net Web开发技术栈
通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core? 什么是.NET?什么是.NET Framework?本文将从上往下,循序渐进的介绍一系列相关.NET的概念 ...
- C++入门一
C++ 项目结构 Resource Files: 项目引用的位图文件,图标,窗口,光标等.比如,你的程序要生成一个exe文件,而文件的图标是你自定义的图标,那就要在这个工程里面添加Icon资源,添加一 ...
- javascript 高级编程系列 - 函数
一.函数创建 1. 函数声明 (出现在全局作用域,或局部作用域) function add (a, b) { return a + b; } function add(a, b) { return a ...
- ACPI in Linux
https://01.org/zh/linux-acpi The goal of this project is to enable Linux to take advantage of platfo ...
- linux之return和exit引发的大问题(vfork和fork)
在coolshell.cn上看到的一个问题.为此拿来研究一下. 首先 看看return和exit的差别 在linux上分别跑一下这个代码 int main() { return 0; //exit(0 ...
- kubernetes对象之Ingress
系列目录 概述 向外网暴露集群内服务,以使客户端能够访问,有以下几种方法,本文重点描述Ingress. LoadBalancer LoadBalancer一般由云服务供应商提供或者用户自定义,运行在集 ...
- mongoDB之监控工具mongostat及其参数的具体含义
mongostat是mongdb自带的状态检测工具,在命令行下使用.它会间隔固定时间获取mongodb的当前运行状态,并输出.如果你发现数据库突然变慢或者有其他问题的话,你第一手的操作就考虑采用mon ...
- ZOJ 3551 Bloodsucker <概率DP>
题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3551 题意:开始有N-1个人和一个吸血鬼, 每天有两个生物见面,当人 ...