UVA1515 Pool construction (最小割模型)
如果不允许转化'#'和'.'的话,那么可以直接在'#'和'.'之间连容量为b的边,把所有'#'和一个源点连接,
所有'.'和一个汇点连接,流量不限,那么割就是建围栏(分割'#'和'.')的花费。
问题是'#'和'.'是可以转化的,由刚才的思路,可以联想到,当'#'可以转化成'.'的时候,那么就不需要在它和周围的'.'之间建围栏,
那么可以限制源点到'#'的容量为d,表示最多花费为d,对称地,限制'.'到汇点T容量为f。
然后跑最大流最小割就好了。
这题思路好神啊。。。仔细体会容量表示最多花费和最小割的关系
#include<bits/stdc++.h>
using namespace std; struct Edge
{
int v,cap,nxt;
};
const int maxv = +;
vector<Edge> edges;
#define PB push_back
int head[maxv],cur[maxv]; void AddEdge(int u,int v,int c)
{
edges.PB({v,c,head[u]});
head[u] = edges.size()-;
edges.PB({u,,head[v]});
head[v] = edges.size()-;
} int S = ,T = ;
int lv[maxv];
bool vis[maxv];
int q[maxv]; bool bfs()
{
memset(vis,,sizeof(vis));
int l = , r = ;
lv[S] = ; q[r++] = S; vis[S] = true;
while(r>l){
int u = q[l++];
for(int i = head[u]; ~i; i = edges[i].nxt){
Edge &e = edges[i];
if(!vis[e.v] && e.cap){
lv[e.v] = lv[u]+; vis[e.v] = true;
q[r++] = e.v;
}
}
}
return vis[T];
} int dfs(int u,int a)
{
if(u == T||!a) return a;
int flow = ,f;
for(int &i = cur[u]; ~i; i = edges[i].nxt){
Edge &e = edges[i];
if(lv[e.v] == lv[u]+ && (f = dfs(e.v,min(a,e.cap)))){
flow += f;
e.cap -= f;
edges[i^].cap += f;
a -= f;
if(!a) break;
}
}
return flow;
} const int INF = 0x3f3f3f3f;
int MaxFlow()
{
int flow = ;
while(bfs()){
memcpy(cur,head,sizeof(head));
flow += dfs(S,INF);
}
return flow;
} const int N = ;
char g[N][N+];
int id[N][N];
int h,w;
int d,f,b; int ID(int i,int j) { return i*w+j+; } void init()
{
scanf("%d%d%d%d%d",&w,&h,&d,&f,&b);
edges.clear();
for(int i = ; i < h; i++){
scanf("%s",g[i]);
for(int j = ; j < w; j++){
id[i][j] = ID(i,j);
}
}
memset(head,-,sizeof(head));
}
int dx[] = {,,,-};
int dy[] = {,-,,}; int main()
{
//freopen("in.txt","r",stdin);
int TestCase; scanf("%d",&TestCase);
while(TestCase--){
init();
int cost = ;
for(int i = ; i < h; i++){
for(int j = ; j < w; j++){
if(i == || i == h- || j == || j == w-){
if(g[i][j] == '.') cost += f;
AddEdge(S,id[i][j],INF);
}else {
if(g[i][j] == '#') AddEdge(S,id[i][j],d);
else AddEdge(id[i][j],T,f);
}
for(int k = ; k < ; k++){
int ni = i+dx[k], nj = j+dy[k];
if(ni<||ni>=h||nj<||nj>=w) continue;
AddEdge(id[i][j],id[ni][nj],b);
}
}
}
printf("%d\n",cost+MaxFlow());
}
return ;
}
UVA1515 Pool construction (最小割模型)的更多相关文章
- UVALive 5905 Pool Construction 最小割,s-t割性质 难度:3
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- Uva -1515 Pool construction(最小割)
输入一个字符矩阵,'.'代表洞,'#'代表草地.可以把草改成洞花费为d,或者把洞改成草花费为f,最后还要在草和洞之间修围栏花费为b. 首先把最外一圈的洞变成草,并累加花费. 增加一个源点和一个汇点,源 ...
- bzoj 2039 最小割模型
比较明显的网络流最小割模型,对于这种模型我们需要先求获利的和,然后减去代价即可. 我们对于第i个人来说, 如果选他,会耗费A[I]的代价,那么(source,i,a[i])代表选他之后的代价,如果不选 ...
- 2019 HDU 多校赛第二场 HDU 6598 Harmonious Army 构造最小割模型
题意: 有n个士兵,你可以选择让它成为战士还是法师. 有m对关系,u和v 如果同时为战士那么你可以获得a的权值 如果同时为法师,你可以获得c的权值, 如果一个为战士一个是法师,你可以获得b的权值 问你 ...
- UVa1515 Pool construction(最小割)
题目 Source https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...
- UVA-1515 Pool construction (最小割)
题目大意:有一块地,分成nxm块.有的块上长着草,有的块上是荒地.将任何一块长着草的块上的草拔掉都需要花费d个力气,往任何一块荒地上种上草都需要花费f个力气,在草和荒地之间架一个篱笆需要花费b个力气, ...
- 【uva 1515】Pool construction(图论--网络流最小割 模型题)
题意:有一个水塘,要求把它用围栏围起来,每个费用为b.其中,(#)代表草,(.)代表洞,把一个草变成洞需要费用d, 把一个洞变成草需要费用f.请输出合法方案中的最小费用. 解法:(不好理解...... ...
- 【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1764 Solved: 965 Description Inp ...
- HDU 6634 网络流最小割模型 启发式合并
如果我们先手拿完所有苹果再去考虑花费的话. S -> 摄像头 -> 苹果 -> T 就相当于找到一个最小割使得S和T分开. ans = sum - flow. 然后对于这一个模型, ...
随机推荐
- A - Alyona and Numbers
Description After finishing eating her bun, Alyona came up with two integers n and m. She decided to ...
- 1.25-1.26 Coordinator数据集和oozie bundle
一.Coordinator数据集 二.oozie bundle
- ElasticSearch基础之查询功能
[01]查询类型: [02]基本查询和组合查询是参与打分的 1.创建映射: 注意事项:基于上面映射的创建: "type": "keyword" # 如果某个字段 ...
- Ubuntu下对与rtl8723be网卡频繁断网问题解决
linux下对于rtl系列的无线网卡,大多数网友都在吐槽,总是频繁的掉网,就此将自己在网上安装时的经验写下. 1.下载网卡驱动,其中包含rtl的大多数包 sudo apt-get install li ...
- 计算机图形学之扫描转换直线-DDA,Bresenham,中点画线算法
1.DDA算法 DDA(Digital Differential Analyer):数字微分法 DDA算法思想:增量思想 公式推导: 效率:采用了浮点加法和浮点显示是需要取整 代码: void lin ...
- tableView刷新指定的cell 或section和滚动到指定的位置
转自:http://blog.csdn.net/tianyou_code/article/details/54426494 //一个section刷新 NSIndexSet *indexSet=[[N ...
- STL——stack
首先,堆栈是一个线性表,插入和删除只在表的一端进行.这一端称为栈顶(Stack Top),另一端则为栈底(Stack Bottom).堆栈的元素插入称为入栈,元素的删除称为出栈.由于元素的入栈和出栈总 ...
- Unity mesh 合并
簡介: 基本上就是把 很多物體結合成一個物體 的作法,這種做法有很多優點,例如:1. 提高效能2. 統一材質 (只要建立一個材質,就能控制.分配給所有物體)3. 動畫控制方便 (像是你要在 Unity ...
- spark sql 优化心得
本篇文章主要记录最近在使用spark sql 时遇到的问题已经使用心得. 1 spark 2.0.1 中,启动thriftserver 或者是spark-sql时,如果希望spark-sql run ...
- 网络编程WebSocket 和socket、HTTP的区别和联系
一.WebSocket 是什么? WebSocket是HTML5规范提出的一种协议:目前除了完犊子的IE浏览器,其他浏览器都基本支持.他是一种协议,万变不离其宗,也是基于TCP协议的:和HTTP协议是 ...