UVA1515 Pool construction (最小割模型)
如果不允许转化'#'和'.'的话,那么可以直接在'#'和'.'之间连容量为b的边,把所有'#'和一个源点连接,
所有'.'和一个汇点连接,流量不限,那么割就是建围栏(分割'#'和'.')的花费。
问题是'#'和'.'是可以转化的,由刚才的思路,可以联想到,当'#'可以转化成'.'的时候,那么就不需要在它和周围的'.'之间建围栏,
那么可以限制源点到'#'的容量为d,表示最多花费为d,对称地,限制'.'到汇点T容量为f。
然后跑最大流最小割就好了。

这题思路好神啊。。。仔细体会容量表示最多花费和最小割的关系
#include<bits/stdc++.h>
using namespace std; struct Edge
{
int v,cap,nxt;
};
const int maxv = +;
vector<Edge> edges;
#define PB push_back
int head[maxv],cur[maxv]; void AddEdge(int u,int v,int c)
{
edges.PB({v,c,head[u]});
head[u] = edges.size()-;
edges.PB({u,,head[v]});
head[v] = edges.size()-;
} int S = ,T = ;
int lv[maxv];
bool vis[maxv];
int q[maxv]; bool bfs()
{
memset(vis,,sizeof(vis));
int l = , r = ;
lv[S] = ; q[r++] = S; vis[S] = true;
while(r>l){
int u = q[l++];
for(int i = head[u]; ~i; i = edges[i].nxt){
Edge &e = edges[i];
if(!vis[e.v] && e.cap){
lv[e.v] = lv[u]+; vis[e.v] = true;
q[r++] = e.v;
}
}
}
return vis[T];
} int dfs(int u,int a)
{
if(u == T||!a) return a;
int flow = ,f;
for(int &i = cur[u]; ~i; i = edges[i].nxt){
Edge &e = edges[i];
if(lv[e.v] == lv[u]+ && (f = dfs(e.v,min(a,e.cap)))){
flow += f;
e.cap -= f;
edges[i^].cap += f;
a -= f;
if(!a) break;
}
}
return flow;
} const int INF = 0x3f3f3f3f;
int MaxFlow()
{
int flow = ;
while(bfs()){
memcpy(cur,head,sizeof(head));
flow += dfs(S,INF);
}
return flow;
} const int N = ;
char g[N][N+];
int id[N][N];
int h,w;
int d,f,b; int ID(int i,int j) { return i*w+j+; } void init()
{
scanf("%d%d%d%d%d",&w,&h,&d,&f,&b);
edges.clear();
for(int i = ; i < h; i++){
scanf("%s",g[i]);
for(int j = ; j < w; j++){
id[i][j] = ID(i,j);
}
}
memset(head,-,sizeof(head));
}
int dx[] = {,,,-};
int dy[] = {,-,,}; int main()
{
//freopen("in.txt","r",stdin);
int TestCase; scanf("%d",&TestCase);
while(TestCase--){
init();
int cost = ;
for(int i = ; i < h; i++){
for(int j = ; j < w; j++){
if(i == || i == h- || j == || j == w-){
if(g[i][j] == '.') cost += f;
AddEdge(S,id[i][j],INF);
}else {
if(g[i][j] == '#') AddEdge(S,id[i][j],d);
else AddEdge(id[i][j],T,f);
}
for(int k = ; k < ; k++){
int ni = i+dx[k], nj = j+dy[k];
if(ni<||ni>=h||nj<||nj>=w) continue;
AddEdge(id[i][j],id[ni][nj],b);
}
}
}
printf("%d\n",cost+MaxFlow());
}
return ;
}
UVA1515 Pool construction (最小割模型)的更多相关文章
- UVALive 5905 Pool Construction 最小割,s-t割性质 难度:3
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- Uva -1515 Pool construction(最小割)
输入一个字符矩阵,'.'代表洞,'#'代表草地.可以把草改成洞花费为d,或者把洞改成草花费为f,最后还要在草和洞之间修围栏花费为b. 首先把最外一圈的洞变成草,并累加花费. 增加一个源点和一个汇点,源 ...
- bzoj 2039 最小割模型
比较明显的网络流最小割模型,对于这种模型我们需要先求获利的和,然后减去代价即可. 我们对于第i个人来说, 如果选他,会耗费A[I]的代价,那么(source,i,a[i])代表选他之后的代价,如果不选 ...
- 2019 HDU 多校赛第二场 HDU 6598 Harmonious Army 构造最小割模型
题意: 有n个士兵,你可以选择让它成为战士还是法师. 有m对关系,u和v 如果同时为战士那么你可以获得a的权值 如果同时为法师,你可以获得c的权值, 如果一个为战士一个是法师,你可以获得b的权值 问你 ...
- UVa1515 Pool construction(最小割)
题目 Source https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...
- UVA-1515 Pool construction (最小割)
题目大意:有一块地,分成nxm块.有的块上长着草,有的块上是荒地.将任何一块长着草的块上的草拔掉都需要花费d个力气,往任何一块荒地上种上草都需要花费f个力气,在草和荒地之间架一个篱笆需要花费b个力气, ...
- 【uva 1515】Pool construction(图论--网络流最小割 模型题)
题意:有一个水塘,要求把它用围栏围起来,每个费用为b.其中,(#)代表草,(.)代表洞,把一个草变成洞需要费用d, 把一个洞变成草需要费用f.请输出合法方案中的最小费用. 解法:(不好理解...... ...
- 【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1764 Solved: 965 Description Inp ...
- HDU 6634 网络流最小割模型 启发式合并
如果我们先手拿完所有苹果再去考虑花费的话. S -> 摄像头 -> 苹果 -> T 就相当于找到一个最小割使得S和T分开. ans = sum - flow. 然后对于这一个模型, ...
随机推荐
- JAVA基础--JAVA API集合框架16
一.Map集合 1. map集合介绍 Collection集合的特点: 集合中存储的所有元素都是单一元素,元素和元素之间没有必然的关系.因此我们把Collection集合也称为单列集合. Map集合: ...
- 文档通信(跨域-不跨域)、时时通信(websocket)、离线存储(applicationCache)、开启多线程(web worker)
一.文档间的通信 postMessage对象 //不跨域 1.iframe:obj.contentWindow [iframe中的window对象] iframe拿到父级页面的window: pare ...
- CTP Release() 的注意问题
测试时发现CThostFtdcMdSpi有个比较严重的问题,就是使用Release()退出清理对象时 会出现死机,并且频率很高,怎样解决? 答:请参考以下代码的释放顺序. template <c ...
- Spring Boot Autowirted注入找不到Bean对象解决方法
报错:Consider defining a bean of type 'xxxxxxxxxxxxx' in your configuration 1. 你应该在 ApplyApplication 启 ...
- Cstring的使用
https://msdn.microsoft.com/zh-cn/aa315043 1.字符串提取函数,CString::Left.CString::Mid .CString::Right CStri ...
- android okhttp和webview session共享
public static OkHttpClient get(Context context){ OkHttpClient.Builder builder = new OkHttpClient.Bui ...
- Single-use Stones Codeforces - 965D
https://codeforces.com/contest/965/problem/D 太神仙了...比E难啊.. 首先呢,根据题意,可以很容易的建出一个最大流模型 就是每个位置建一条边,容量限制为 ...
- ctypes to load library in c/c++
cdll.LoadLibrary(...) restype (default is c_int) argtypes (what's the default? c_int?) customized da ...
- C51存储的优化
我们知道51单片机只有128BYTE的RAM, 有的增强型有XRAM,此时编程时就要注意,否则就有可能超出空间 1 对于各模块的全局变量.静态变量.全局枚举型常量,静态枚举型常量.个别操作存储(如外部 ...
- Parenthesis UVALive - 4882 删除不必要的括号序列,模拟题 + 数据
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...